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Abstract

Floating-point arithmetic is considered an esoteric subject by many people.
This is rather surprising because floating-point is ubiquitous in computer
systems. Almost every language has a floating-point datatype; computers from
PC’s to supercomputers have floating-point accelerators; most compilers will
be called upon to compile floating-point algorithms from time to time; and
virtually every operating system must respond to floating-point exceptions
such as overflow. This paper presents a tutorial on those aspects of floating-
point that have a direct impact on designers of computer systems. It begins
with background on floating-point representation and rounding error,
continues with a discussion of the IEEE floating-point standard, and concludes
with numerous examples of how computer builders can better support
floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems
Organization]: General — instruction set design; D.3.4 [Programming
Languages]: Processors — compilers, optimization; G.1.0 [Numerical Analysis]:
General — computer arithmetic, error analysis, numerical algorithms (Secondary)

D.2.1 [Software Engineering]: Requirements/Specifications — languages; D.3.4
Programming Languages]: Formal Definitions and Theory — semantics; D.4.1
Operating Systems]: Process Management — synchronization.

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Denormalized number, exception, floating-
point, floating-point standard, gradual underflow, guard digit, NaN, overflow,
relative error, rounding error, rounding mode, ulp, underflow.

Introduction

Builders of computer systems often need information about floating-point
arithmetic. There are, however, remarkably few sources of detailed information
about it. One of the few books on the subject, Floating-Point Computation by
Pat Sterbenz, is long out of print. This paper is a tutorial on those aspects of
floating-point arithmetic (floating-point hereafter) that have a direct connection
to systems building. It consists of three loosely connected parts. The first
Section , “Rounding Error,” on page 173, discusses the implications of using
different rounding strategies for the basic operations of addition, subtraction,
multiplication and division. It also contains background information on the
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two methods of measuring rounding error, ulps and relative error. The
second part discusses the IEEE floating-point standard, which is becoming
rapidly accepted by commercial hardware manufacturers. Included in the IEEE
standard is the rounding method for basic operations. The discussion of the
standard draws on the material in the Section , “Rounding Error,” on page 173.
The third part discusses the connections between floating-point and the design
of various aspects of computer systems. Topics include instruction set design,
optimizing compilers and exception handling.

I have tried to avoid making statements about floating-point without also
giving reasons why the statements are true, especially since the justifications
involve nothing more complicated than elementary calculus. Those
explanations that are not central to the main argument have been grouped into
a section called “ The Details,” so that they can be skipped if desired. In
particular, the proofs of many of the theorems appear in this section. The end
of each proof is marked with the ❚ symbol; when a proof is not included, the ❚

appears immediately following the statement of the theorem.

Rounding Error

Squeezing infinitely many real numbers into a finite number of bits requires an
approximate representation. Although there are infinitely many integers, in
most programs the result of integer computations can be stored in 32 bits. In
contrast, given any fixed number of bits, most calculations with real numbers
will produce quantities that cannot be exactly represented using that many
bits. Therefore the result of a floating-point calculation must often be rounded
in order to fit back into its finite representation. This rounding error is the
characteristic feature of floating-point computation. “Relative Error and Ulps”
on page 176 describes how it is measured.

Since most floating-point calculations have rounding error anyway, does it
matter if the basic arithmetic operations introduce a little bit more rounding
error than necessary? That question is a main theme throughout this section.
“Guard Digits” on page 178 discusses guard digits, a means of reducing the
error when subtracting two nearby numbers. Guard digits were considered
sufficiently important by IBM that in 1968 it added a guard digit to the double
precision format in the System/360 architecture (single precision already had a
guard digit), and retrofitted all existing machines in the field. Two examples
are given to illustrate the utility of guard digits.
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The IEEE standard goes further than just requiring the use of a guard digit. It
gives an algorithm for addition, subtraction, multiplication, division and
square root, and requires that implementations produce the same result as that
algorithm. Thus, when a program is moved from one machine to another, the
results of the basic operations will be the same in every bit if both machines
support the IEEE standard. This greatly simplifies the porting of programs.
Other uses of this precise specification are given in “Exactly Rounded
Operations” on page 185.

Floating-point Formats

Several different representations of real numbers have been proposed, but by
far the most widely used is the floating-point representation.1 Floating-point
representations have a base β (which is always assumed to be even) and a
precision p. If β = 10 and p = 3 then the number 0.1 is represented as 1.00 × 10-1.
If β = 2 and p = 24, then the decimal number 0.1 cannot be represented exactly
but is approximately 1.10011001100110011001101 × 2-4. In general, a floating-
point number will be represented as ± d.dd… d × βe, where d.dd… d is called the
significand2 and has p digits. More precisely ± d0 . d1 d2 … dp-1 × βe represents
the number

(1)

The term floating-point number will be used to mean a real number that can be
exactly represented in the format under discussion. Two other parameters
associated with floating-point representations are the largest and smallest
allowable exponents, emax and emin. Since there are βp possible significands, and
emax - emin + 1 possible exponents, a floating-point number can be encoded in

1. Examples of other representations are floating slash and signed logarithm [Matula and Kornerup 1985;
Swartzlander and Alexopoulos 1975].

2. This term was introduced by Forsythe and Moler [1967], and has generally replaced the older term mantissa.

d0 d1β 1– … dp 1– β p 1–( )–+ + + 
  βe 0 di β<≤( ),±

log2 emax emin– 1+( ) log2 βp( ) 1+ +



What Every Computer Scientist Should Know About Floating-Point Arithmetic 175

D

bits, where the final +1 is for the sign bit. The precise encoding is not important
for now.

There are two reasons why a real number might not be exactly representable as
a floating-point number. The most common situation is illustrated by the
decimal number 0.1. Although it has a finite decimal representation, in binary
it has an infinite repeating representation. Thus when β = 2, the number 0.1 lies
strictly between two floating-point numbers and is exactly representable by
neither of them. A less common situation is that a real number is out of range,
that is, its absolute value is larger than β × βemax or smaller than 1.0 × βemin.
Most of this paper discusses issues due to the first reason. However, numbers
that are out of range will be discussed in “Infinity” on page 199 and
“Denormalized Numbers” on page 202.

Floating-point representations are not necessarily unique. For example, both
0.01 × 101 and 1.00 × 10-1 represent 0.1. If the leading digit is nonzero (d0 ≠ 0 in
equation (1) above), then the representation is said to be normalized. The
floating-point number 1.00 × 10-1 is normalized, while 0.01 × 101 is not. When
β = 2, p = 3, emin = -1 and emax = 2 there are 16 normalized floating-point
numbers, as shown in Figure D-1. The bold hash marks correspond to numbers
whose significand is 1.00. Requiring that a floating-point representation be
normalized makes the representation unique. Unfortunately, this restriction
makes it impossible to represent zero! A natural way to represent 0 is with
1.0 × βemin-1, since this preserves the fact that the numerical ordering of
nonnegative real numbers corresponds to the lexicographic ordering of their
floating-point representations.1 When the exponent is stored in a k bit field,
that means that only 2k - 1 values are available for use as exponents, since one
must be reserved to represent 0.

Note that the × in a floating-point number is part of the notation, and different
from a floating-point multiply operation. The meaning of the × symbol should
be clear from the context. For example, the expression (2.5 × 10-3) × (4.0 × 102)
involves only a single floating-point multiplication.

1. This assumes the usual arrangement where the exponent is stored to the left of the significand.
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Figure D-1 Normalized numbers when β = 2, p = 3, emin  =  -1, emax  = 2

Relative Error and Ulps

Since rounding error is inherent in floating-point computation, it is important
to have a way to measure this error. Consider the floating-point format with
β = 10 and p = 3, which will be used throughout this section. If the result of a
floating-point computation is 3.12 × 10-2, and the answer when computed to
infinite precision is .0314, it is clear that this is in error by 2 units in the last
place. Similarly, if the real number .0314159 is represented as 3.14 × 10-2, then it
is in error by .159 units in the last place. In general, if the floating-point
number d.d…d × βe is used to represent z, then it is in error by d.d…d -
(z/βe)βp-1 units in the last place.1, 2 The term ulps  will be used as shorthand
for “units in the last place.” If the result of a calculation is the floating-point
number nearest to the correct result, it still might be in error by as much as .5
ulp . Another way to measure the difference between a floating-point number
and the real number it is approximating is relative error, which is simply the
difference between the two numbers divided by the real number. For example
the relative error committed when approximating 3.14159 by 3.14 × 100 is
.00159/3.14159 ≈ .0005.

To compute the relative error that corresponds to .5 ulp , observe that when a
real number is approximated by the closest possible floating-point number
d.dd...dd × βe, the error can be as large as 0.00...00β′ × βe, where β’ is the digit
β/2, there are p units in the significand of the floating-point number, and p
units of 0 in the significand of the error. This error is ((β/2)β-p) × βe. Since

1. Unless the number z is larger than βemax+1 or smaller than βemin. Numbers which are out of range in this
fashion will not be considered until further notice.

2. Let z’ be the floating-point number that approximates z.  Then d.d…d - (z/βe)βp-1 is equivalent to
z’-z/ulp(z’).   (See Numerical Computation Guide for the definition of ulp(z)).  A more accurate formula  for
measuring error is z’-z/ulp(z).   -- Ed.

0 1 2 3 4 5 6 7
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numbers of the form d.dd…dd × βe all have the same absolute error, but have
values that range between βe and β × βe, the relative error ranges between
((β/2)β-p) × βe/βe and ((β/2)β-p) × βe/βe+1. That is,

(2)

In particular, the relative error corresponding to .5 ulp can vary by a factor of
β. This factor is called the wobble.  Setting ε = (β/2)β-p to the largest of the
bounds in (2) above, we can say that when a real number is rounded to the
closest floating-point number, the relative error is always bounded by ε, which
is referred to as machine epsilon.

In the example above, the relative error was .00159/3.14159 ≈ .0005. In order to
avoid such small numbers, the relative error is normally written as a factor
times ε, which in this case is ε = (β/2)β-p = 5(10)-3 = .005. Thus the relative error
would be expressed as (.00159/3.14159)/.005) ε ≈ 0.1ε.

To illustrate the difference between ulps and relative error, consider the real
number x = 12.35. It is approximated by  = 1.24 × 101. The error is 0.5 ulps ,
the relative error is 0.8ε. Next consider the computation 8 . The exact value is
8x = 98.8, while the computed value is 8  = 9.92 × 101. The error is now 4.0
ulps , but the relative error is still 0.8ε. The error measured in ulps  is 8 times
larger, even though the relative error is the same. In general, when the base is
β, a fixed relative error expressed in ulps  can wobble by a factor of up to β.
And conversely, as equation (2) above shows, a fixed error of .5 ulps  results in
a relative error that can wobble by β.

The most natural way to measure rounding error is in ulps . For example
rounding to the nearest floating-point number corresponds to an error of less
than or equal to .5 ulp . However, when analyzing the rounding error caused
by various formulas, relative error is a better measure. A good illustration of
this is the analysis on page 226. Since ε can overestimate the effect of rounding
to the nearest floating-point number by the wobble factor of β, error estimates
of formulas will be tighter on machines with a small β.

When only the order of magnitude of rounding error is of interest, ulps  and ε
may be used interchangeably, since they differ by at most a factor of β. For
example, when a floating-point number is in error by n ulps , that means that
the number of contaminated digits is logβ n. If the relative error in a
computation is nε, then

contaminated digits ≈ logβ n. (3)

1
2
---β p– 1

2
---ulp

β
2
---β p–≤≤

x̃
x̃

x̃
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Guard Digits

One method of computing the difference between two floating-point numbers
is to compute the difference exactly and then round it to the nearest floating-
point number. This is very expensive if the operands differ greatly in size.
Assuming p = 3, 2.15 × 1012 - 1.25 × 10-5 would be calculated as

x = 2.15 × 1012

y = .0000000000000000125 × 1012

x - y = 2.1499999999999999875 × 1012

which rounds to 2.15 × 1012. Rather than using all these digits, floating-point
hardware normally operates on a fixed number of digits. Suppose that the
number of digits kept is p, and that when the smaller operand is shifted right,
digits are simply discarded (as opposed to rounding). Then
2.15 × 1012 - 1.25 × 10-5 becomes

x = 2.15 × 1012

y = 0.00× 1012

x - y = 2.15 × 1012

The answer is exactly the same as if the difference had been computed exactly
and then rounded. Take another example: 10.1 - 9.93. This becomes

x = 1.01× 101

y = 0.99× 101

x - y = .02× 101

The correct answer is .17, so the computed difference is off by 30 ulps  and is
wrong in every digit! How bad can the error be?

Theorem 1

Using a floating-point format with parameters β and p, and computing differences
using p digits, the relative error of the result can be as large as β - 1.

Proof

A relative error of β - 1 in the expression x - y occurs when x = 1.00…0 and
y = .ρρ…ρ, where ρ = β - 1. Here y has p digits (all equal to ρ). The exact
difference is x - y = β-p. However, when computing the answer using only p
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digits, the rightmost digit of y gets shifted off, and so the computed
difference is β-p+1. Thus the error is β-p - β-p+1 = β-p (β - 1), and the relative
error is β-p(β - 1)/β-p = β - 1. ❚

When β=2, the relative error can be as large as the result, and when β=10, it can
be 9 times larger. Or to put it another way, when β=2, equation (3) above shows
that the number of contaminated digits is log2(1/ε) = log2(2p) = p. That is, all of
the p digits in the result are wrong! Suppose that one extra digit is added to
guard against this situation (a guard digit). That is, the smaller number is
truncated to p + 1 digits, and then the result of the subtraction is rounded to p
digits. With a guard digit, the previous example becomes

x = 1.010 × 101

y = 0.993 × 101

x - y = .017× 101

and the answer is exact. With a single guard digit, the relative error of the
result may be greater than ε, as in 110 - 8.59.

x = 1.10× 102

y = .085× 102

x - y = 1.015 × 102

This rounds to 102, compared with the correct answer of 101.41, for a relative
error of .006, which is greater than ε = .005. In general, the relative error of the
result can be only slightly larger than ε. More precisely,

Theorem 2

If x and y are floating-point numbers in a format with parameters β and p, and if
subtraction is done with p + 1 digits (i.e. one guard digit), then the relative
rounding error in the result is less than 2ε.

This theorem will be proven in “Rounding Error” on page 225. Addition is
included in the above theorem since x and y can be positive or negative.

Cancellation

The last section can be summarized by saying that without a guard digit, the
relative error committed when subtracting two nearby quantities can be very
large. In other words, the evaluation of any expression containing a subtraction
(or an addition of quantities with opposite signs) could result in a relative error
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so large that all the digits are meaningless (Theorem 1). When subtracting
nearby quantities, the most significant digits in the operands match and cancel
each other. There are two kinds of cancellation: catastrophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding
errors. For example in the quadratic formula, the expression b2 - 4ac occurs.
The quantities b2 and 4ac are subject to rounding errors since they are the
results of floating-point multiplications. Suppose that they are rounded to the
nearest floating-point number, and so are accurate to within .5 ulp . When they
are subtracted, cancellation can cause many of the accurate digits to disappear,
leaving behind mainly digits contaminated by rounding error. Hence the
difference might have an error of many ulps . For example, consider b = 3.34,
a = 1.22, and c = 2.28. The exact value of b2 - 4ac is .0292. But b2 rounds to 11.2
and 4ac rounds to 11.1, hence the final answer is .1 which is an error by 70
ulps , even though 11.2 - 11.1 is exactly equal to .11. The subtraction did not
introduce any error, but rather exposed the error introduced in the earlier
multiplications.

Benign cancellation occurs when subtracting exactly known quantities. If x and y
have no rounding error, then by Theorem 2 if the subtraction is done with a
guard digit, the difference x-y has a very small relative error (less than 2ε).

A formula that exhibits catastrophic cancellation can sometimes be rearranged
to eliminate the problem. Again consider the quadratic formula

(4)

When , then  does not involve a cancellation and

. But the other addition (subtraction) in one of the formulas will
have a catastrophic cancellation. To avoid this, multiply the numerator and
denominator of r1 by

1. 700, not 70.  Since .1 - .0292 = .0708, the error  in terms of ulp(0.0292) is 708 ulps. -- Ed.

r1
b– b2 4ac–+

2a
--------------------------------------- r2, b– b2 4ac––

2a
--------------------------------------= =

b2 ac» b2 4ac–

b2 4ac– b≈

b– b2 4ac––
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(and similarly for r2) to obtain

(5)

If  and , then computing r1 using formula (4) will involve a
cancellation. Therefore, use (5) for computing r1 and (4) for r2. On the other
hand, if b < 0, use (4) for computing r1 and (5) for r2.

The expression x2 - y2 is another formula that exhibits catastrophic cancellation.
It is more accurate to evaluate it as (x - y)(x + y).1 Unlike the quadratic formula,
this improved form still has a subtraction, but it is a benign cancellation of
quantities without rounding error, not a catastrophic one. By Theorem 2, the
relative error in x - y is at most 2ε. The same is true of x + y. Multiplying two
quantities with a small relative error results in a product with a small relative
error (see “Rounding Error” on page 225).

In order to avoid confusion between exact and computed values, the following
notation is used. Whereas x - y denotes the exact difference of x and y, x  y
denotes the computed difference (i.e., with rounding error). Similarly ⊕, ⊗, and

 denote computed addition, multiplication, and division, respectively. All
caps indicate the computed value of a function, as in LN(x) or SQRT(x). Lower
case functions and traditional mathematical notation denote their exact values

 as in ln(x) and .

Although (x y) ⊗ (x ⊕ y) is an excellent approximation to x2 - y2, the
floating-point numbers x and y might themselves be approximations to some
true quantities  and . For example,  and  might be exactly known
decimal numbers that cannot be expressed exactly in binary. In this case, even
though x y is a good approximation to x - y, it can have a huge relative error
compared to the true expression , and so the advantage of (x + y)(x - y)
over x2 - y2 is not as dramatic. Since computing (x + y)(x - y) is about the same
amount of work as computing x2 - y2, it is clearly the preferred form in this
case. In general, however, replacing a catastrophic cancellation by a benign one
is not worthwhile if the expense is large because the input is often (but not

1. Although the expression (x - y)(x + y) does not cause a catastrophic cancellation, it is slightly less accurate
than x2 - y2 if  or . In this case, (x - y)(x + y) has three rounding errors, but x2 - y2 has only two
since the rounding error committed when computing the smaller of x2 and y2 does not affect the final
subtraction.

r1
2c

b– b2 4ac––
-------------------------------------- r2, 2c

b– b2 4ac–+
---------------------------------------= =

b2 ac» b 0>

x y» x y«

x

x̂ ŷ x̂ ŷ

x̂ ŷ–
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always) an approximation. But eliminating a cancellation entirely (as in the
quadratic formula) is worthwhile even if the data are not exact. Throughout
this paper, it will be assumed that the floating-point inputs to an algorithm are
exact and that the results are computed as accurately as possible.

The expression x2 - y2 is more accurate when rewritten as (x - y)(x + y) because
a catastrophic cancellation is replaced with a benign one. We next present more
interesting examples of formulas exhibiting catastrophic cancellation that can
be rewritten to exhibit only benign cancellation.

The area of a triangle can be expressed directly in terms of the lengths of its
sides a, b, and c as

(6)

Suppose the triangle is very flat; that is, a ≈ b + c. Then s ≈ a, and the term (s - a)
in eq. (6) subtracts two nearby numbers, one of which may have rounding
error. For example, if a = 9.0, b = c = 4.53, then the correct value of s is 9.03 and
A is 2.342... . Even though the computed value of s (9.05) is in error by only 2
ulps , the computed value of A is 3.04, an error of 70 ulps .

There is a way to rewrite formula (6) so that it will return accurate results even
for flat triangles [Kahan 1986]. It is

(7)

If a, b and c do not satisfy a ≥ b ≥ c, simply rename them before applying (7). It
is straightforward to check that the right-hand sides of (6) and (7) are
algebraically identical. Using the values of a, b, and c above gives a computed
area of 2.35, which is 1 ulp  in error and much more accurate than the first
formula.

Although formula (7) is much more accurate than (6) for this example, it would
be nice to know how well (7) performs in general.

A s s a–( ) s b–( ) s c–( ) where s, a b c+ +( ) 2⁄= =

A
a b c+( )+( ) c a b–( )–( ) c a b–( )+( ) a b c–( )+( )

4
------------------------------------------------------------------------------------------------------------------------------------------------ a b c≥ ≥,=
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Theorem 3

The rounding error incurred when using (7) to compute the area of a triangle is at
most 11ε, provided that subtraction is performed with a guard digit, e ≤ .005, and
that square roots are computed to within 1/2 ulp .

The condition that e < .005 is met in virtually every actual floating-point
system. For example when β = 2, p ≥ 8 ensures that e < .005, and when β = 10,
p ≥ 3 is enough.

In statements like Theorem 3 that discuss the relative error of an expression, it
is understood that the expression is computed using floating-point arithmetic.
In particular, the relative error is actually of the expression

SQRT((a ⊕ (b ⊕ c)) ⊗ (c  (a b)) ⊗ (c ⊕ (a  b)) ⊗ (a ⊕ (b  c)))  4 (8)

Because of the cumbersome nature of (8), in the statement of theorems we will
usually say the computed value of E rather than writing out E with circle
notation.

Error bounds are usually too pessimistic. In the numerical example given
above, the computed value of (7) is 2.35, compared with a true value of 2.34216
for a relative error of 0.7ε, which is much less than 11ε. The main reason for
computing error bounds is not to get precise bounds but rather to verify that
the formula does not contain numerical problems.

A final example of an expression that can be rewritten to use benign
cancellation is (1 + x)n, where . This expression arises in financial
calculations. Consider depositing $100 every day into a bank account that
earns an annual interest rate of 6%, compounded daily. If n = 365 and i = .06,

the amount of money accumulated at the end of one year is 100

dollars. If this is computed using β = 2 and p = 24, the result is $37615.45
compared to the exact answer of $37614.05, a discrepancy of $1.40. The reason
for the problem is easy to see. The expression 1 + i/n involves adding 1 to
.0001643836, so the low order bits of i/n are lost. This rounding error is
amplified when 1 + i/n is raised to the nth power.

x 1«

1 i n⁄+( ) n 1–
i n⁄

--------------------------------
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The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), where
now the problem is to compute ln(1 + x) for small x. One approach is to use the
approximation ln(1 + x) ≈ x, in which case the payment becomes $37617.26,
which is off by $3.21 and even less accurate than the obvious formula. But
there is a way to compute ln(1 + x) very accurately, as Theorem 4 shows
[Hewlett-Packard 1982]. This formula yields $37614.07, accurate to within two
cents!

Theorem 4 assumes that LN (x) approximates ln(x) to within 1/2 ulp . The
problem it solves is that when x is small, LN(1 ⊕ x) is not close to ln(1 + x)
because 1 ⊕ x has lost the information in the low order bits of x. That is, the
computed value of ln(1 + x) is not close to its actual value when .

Theorem 4

 If ln(1 + x) is computed using the formula

   x for 1 ⊕ x = 1
ln(1 + x) =

 for 1 ⊕ x ≠ 1

the relative error is at most 5ε when 0 ≤ x < , provided subtraction is performed

with a guard digit, e < 0.1, and ln is computed to within 1/2 ulp .

This formula will work for any value of x but is only interesting for ,
which is where catastrophic cancellation occurs in the naive formula ln(1 + x).
Although the formula may seem mysterious, there is a simple explanation for

why it works. Write ln(1 + x) as . The left hand factor

can be computed exactly, but the right hand factor µ(x) = ln(1 + x)/x will suffer
a large rounding error when adding 1 to x. However, µ is almost constant,
since ln(1 + x) ≈ x. So changing x slightly will not introduce much error. In

other words, if , computing  will be a good approximation to

xµ(x) = ln(1 + x). Is there a value for  for which  and  can be
computed

x 1«

x ln(1+x)
1 x+( ) 1–

---------------------------

3
4
---

x 1«

x ln 1 x+( )
x

------------------- 
 

xµ x( )=

x̃ x≈ xµ x̃( )

x̃ x̃ x̃ 1+
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accurately? There is; namely  = (1 ⊕ x)  1, because then 1 +  is exactly
equal to 1 ⊕ x.

The results of this section can be summarized by saying that a guard digit
guarantees accuracy when nearby precisely known quantities are subtracted
(benign cancellation). Sometimes a formula that gives inaccurate results can be
rewritten to have much higher numerical accuracy by using benign
cancellation; however, the procedure only works if subtraction is performed
using a guard digit. The price of a guard digit is not high, because it merely
requires making the adder one bit wider. For a 54 bit double precision adder,
the additional cost is less than 2%. For this price, you gain the ability to run
many algorithms such as the formula (6) for computing the area of a triangle
and the expression ln(1 + x). Although most modern computers have a guard
digit, there are a few (such as Cray® systems) that do not.

Exactly Rounded Operations

When floating-point operations are done with a guard digit, they are not as
accurate as if they were computed exactly then rounded to the nearest floating-
point number. Operations performed in this manner will be called exactly
rounded.1 The example immediately preceding Theorem 2 shows that a single
guard digit will not always give exactly rounded results. The previous section
gave several examples of algorithms that require a guard digit in order to work
properly. This section gives examples of algorithms that require exact
rounding.

So far, the definition of rounding has not been given. Rounding is
straightforward, with the exception of how to round halfway cases; for
example, should 12.5 round to 12 or 13? One school of thought divides the 10
digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7, 8, 9} round up; thus
12.5 would round to 13. This is how rounding works on Digital Equipment
Corporation’s VAX™ computers. Another school of thought says that since
numbers ending in 5 are halfway between two possible roundings, they should
round down half the time and round up the other half. One way of obtaining
this 50% behavior to require that the rounded result have its least significant

1. Also commonly referred to as correctly  rounded.  --  Ed.

x̃ x̃
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digit be even. Thus 12.5 rounds to 12 rather than 13 because 2 is even. Which of
these methods is best, round up or round to even? Reiser and Knuth [1975]
offer the following reason for preferring round to even.

Theorem 5

Let x and y be floating-point numbers, and define x0 = x, x1 = (x0  y) ⊕ y, …,
xn = (xn-1  y) ⊕ y. If ⊕ and  are exactly rounded using round to even, then
either xn = x for all n or xn = x1 for all n ≥ 1. ❚

To clarify this result, consider β = 10, p = 3 and let x = 1.00, y = -.555. When
rounding up, the sequence becomes x0  y = 1.56, x1 = 1.56  .555 = 1.01,
x1 y = 1.01 ⊕ .555 = 1.57, and each successive value of xn increases by .01,
until xn = 9.45 (n ≤ 845)1. Under round to even, xn is always 1.00. This example
suggests that when using the round up rule, computations can gradually drift
upward, whereas when using round to even the theorem says this cannot
happen. Throughout the rest of this paper, round to even will be used.

One application of exact rounding occurs in multiple precision arithmetic.
There are two basic approaches to higher precision. One approach represents
floating-point numbers using a very large significand, which is stored in an
array of words, and codes the routines for manipulating these numbers in
assembly language. The second approach represents higher precision floating-
point numbers as an array of ordinary floating-point numbers, where adding
the elements of the array in infinite precision recovers the high precision
floating-point number. It is this second approach that will be discussed here.
The advantage of using an array of floating-point numbers is that it can be
coded portably in a high level language, but it requires exactly rounded
arithmetic.

The key to multiplication in this system is representing a product xy as a sum,
where each summand has the same precision as x and y. This can be done by
splitting x and y. Writing x = xh + xl and y = yh + yl, the exact product is xy =
xh yh + xh yl + xl yh + xl yl. If x and y have p bit significands, the summands will
also have p bit significands provided that xl, xh, yh, yl can be represented using
p/2 bits. When p is even, it is easy to find a splitting. The number
x0.x1 … xp - 1 can be written as the sum of x0.x1 … xp/2 - 1 and
 0.0 … 0xp/2 … xp - 1. When p is odd, this simple splitting method won’t work.

1. When  n = 845, xn= 9.45,  xn + 0.555 = 10.0, and 10.0 - 0.555 = 9.45.   Therefore, xn = x845  for n > 845.



What Every Computer Scientist Should Know About Floating-Point Arithmetic 187

D

An extra bit can, however, be gained by using negative numbers. For example,
if β = 2, p = 5, and x = .10111, x can be split as xh = .11 and xl = -.00001. There is
more than one way to split a number. A splitting method that is easy to
compute is due to Dekker [1971], but it requires more than a single guard digit.

Theorem 6

Let p be the floating-point precision, with the restriction that p is even when β > 2,
and assume that floating-point operations are exactly rounded. Then if k = [p/2] is
half the precision (rounded up) and m = βk + 1, x can be split as x = xh + xl, where
xh = (m ⊗ x)  (m ⊗ x  x), xl = x  xh, and each xi is representable using [p/2]
bits of precision.

To see how this theorem works in an example, let β = 10, p = 4, b = 3.476, a =
3.463, and c = 3.479. Then b2 - ac rounded to the nearest floating-point number
is .03480, while b ⊗ b = 12.08, a ⊗ c = 12.05, and so the computed value of b2 -
ac is .03. This is an error of 480 ulps . Using Theorem 6 to write b = 3.5 - .024,
a = 3.5 - .037, and c = 3.5 - .021, b2 becomes 3.52 - 2 × 3.5 × .024 + .0242. Each
summand is exact, so b2 = 12.25 - .168 + .000576, where the sum is left
unevaluated at this point. Similarly, ac = 3.52 - (3.5 × .037 + 3.5 × .021) + .037 ×
.021 = 12.25 - .2030 +.000777. Finally, subtracting these two series term by term
gives an estimate for b2 - ac of 0 ⊕ .0350  .000201 = .03480, which is identical
to the exactly rounded result. To show that Theorem 6 really requires exact
rounding, consider p = 3, β = 2, and x = 7. Then m = 5, mx = 35, and m ⊗ x = 32.
If subtraction is performed with a single guard digit, then (m ⊗ x) x = 28.
Therefore, xh = 4 and xl = 3, hence xl is not representable with [�p/2] = 1 bit.

As a final example of exact rounding, consider dividing m by 10. The result is a
floating-point number that will in general not be equal to m/10. When β = 2,
multiplying m/10 by 10 will miraculously restore m, provided exact rounding
is being used. Actually, a more general fact (due to Kahan) is true. The proof is
ingenious, but readers not interested in such details can skip ahead to Section ,
“The IEEE Standard,” on page 189.

Theorem 7

When β = 2, if m and n are integers with |m| < 2p - 1 and n has the special form n
= 2i + 2j, then (m  n) ⊗ n = m, provided floating-point operations are exactly
rounded.
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Proof

Scaling by a power of two is harmless, since it changes only the exponent,
not the significand. If q = m/n, then scale n so that 2p - 1 ≤ n < 2p and scale m

so that  < q < 1. Thus, 2p - 2 < m < 2p. Since m has p significant bits, it has at

most one bit to the right of the binary point. Changing the sign of m is
harmless, so assume that q > 0.

If  = m  n, to prove the theorem requires showing that

(9)

That is because m has at most 1 bit right of the binary point, so n  will

round to m. To deal with the halfway case when |n  - m| = , note that

since the initial unscaled m had |m| < 2p - 1, its low-order bit was 0, so the
low-order bit of the scaled m is also 0. Thus, halfway cases will round to m.

Suppose that q = .q1q2 …, and let  = .q1q2 … qp1. To estimate |n  - m|, first
compute |  - q| = |N/2p + 1 - m/n|, where N is an odd integer. Since n =
2i + 2j and 2p - 1 ≤ n < 2p, it must be that n = 2p - 1 + 2k for some k ≤ p - 2, and
thus

.

The numerator is an integer, and since N is odd, it is in fact an odd integer.
Thus, |  - q| ≥ 1/(n2p + 1 - k). Assume q <  (the case q >  is similar).1 Then
n  < m, and

|m-n |= m-n  = n(q- ) = n(q-( -2-p-1) ) ≤

=(2p-1+2k)2-p-1–2-p-1+k =

This establishes (9) and proves the theorem.2 ❚

1. Notice that in binary, q cannot equal  .   -- Ed.
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The theorem holds true for any base β, as long as 2i + 2j is replaced by βi + βj.
As β gets larger, however, denominators of the form βi + βj  are farther and
farther apart.

We are now in a position to answer the question, Does it matter if the basic
arithmetic operations introduce a little more rounding error than necessary?
The answer is that it does matter, because accurate basic operations enable us
to prove that formulas are “correct” in the sense they have a small relative
error. “Cancellation” on page 179 discussed several algorithms that require
guard digits to produce correct results in this sense. If the input to those
formulas are numbers representing imprecise measurements, however, the
bounds of Theorems 3 and 4 become less interesting. The reason is that the
benign cancellation x - y can become catastrophic if x and y are only
approximations to some measured quantity. But accurate operations are useful
even in the face of inexact data, because they enable us to establish exact
relationships like those discussed in Theorems 6 and 7. These are useful even if
every floating-point variable is only an approximation to some actual value.

The IEEE Standard

There are two different IEEE standards for floating-point computation. IEEE
754 is a binary standard that requires β = 2, p = 24 for single precision and p =
53 for double precision [IEEE 1987]. It also specifies the precise layout of bits in
a single and double precision. IEEE 854 allows either β = 2 or β = 10 and unlike
754, does not specify how floating-point numbers are encoded into bits [Cody
et al. 1984]. It does not require a particular value for p, but instead it specifies
constraints on the allowable values of p for single and double precision. The
term IEEE Standard will be used when discussing properties common to both
standards.

This section provides a tour of the IEEE standard. Each subsection discusses
one aspect of the standard and why it was included. It is not the purpose of
this paper to argue that the IEEE standard is the best possible floating-point
standard but rather to accept the standard as given and provide an
introduction to its use. For full details consult the standards themselves [IEEE
1987; Cody et al. 1984].

2. Left as an exercise to the reader: extend the proof to bases other than 2.  -- Ed.
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Formats and Operations

Base

It is clear why IEEE 854 allows β = 10. Base ten is how humans exchange and
think about numbers. Using β = 10 is especially appropriate for calculators,
where the result of each operation is displayed by the calculator in decimal.

There are several reasons why IEEE 854 requires that if the base is not 10, it
must be 2. “Relative Error and Ulps” on page 176 mentioned one reason: the
results of error analyses are much tighter when β is 2 because a rounding error
of .5 ulp  wobbles by a factor of β when computed as a relative error, and error
analyses are almost always simpler when based on relative error. A related
reason has to do with the effective precision for large bases. Consider β = 16,
p = 1 compared to β = 2, p = 4. Both systems have 4 bits of significand.
Consider the computation of 15/8. When β = 2, 15 is represented as 1.111 × 23,
and 15/8 as 1.111 × 20. So 15/8 is exact. However, when β = 16, 15 is
represented as F × 160, where F is the hexadecimal digit for 15. But 15/8 is
represented as 1 × 160, which has only one bit correct. In general, base 16 can
lose up to 3 bits, so that a precision of p hexidecimal digits can have an
effective precision as low as 4p - 3 rather than 4p binary bits. Since large values
of β have these problems, why did IBM choose β = 16 for its system/370? Only
IBM knows for sure, but there are two possible reasons. The first is increased
exponent range. Single precision on the system/370 has β = 16, p = 6. Hence
the significand requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits
for the exponent and one for the sign bit. Thus the magnitude of representable

numbers ranges from about  to about  = . To get a similar
exponent range when β = 2 would require 9 bits of exponent, leaving only 22
bits for the significand. However, it was just pointed out that when β = 16, the
effective precision can be as low as 4p - 3 = 21 bits. Even worse, when β = 2 it is
possible to gain an extra bit of precision (as explained later in this section), so
the β = 2 machine has 23 bits of precision to compare with a range of 21 – 24
bits for the β = 16 machine.

Another possible explanation for choosing β = 16 has to do with shifting. When
adding two floating-point numbers, if their exponents are different, one of the
significands will have to be shifted to make the radix points line up, slowing
down the operation. In the β = 16, p = 1 system, all the numbers between 1 and
15 have the same exponent, and so no shifting is required when adding any of

16 26– 1626 228
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the (15
2 ) = 105 possible pairs of distinct numbers from this set. However, in the

β = 2, p = 4 system, these numbers have exponents ranging from 0 to 3, and
shifting is required for 70 of the 105 pairs.

In most modern hardware, the performance gained by avoiding a shift for a
subset of operands is negligible, and so the small wobble of β = 2 makes it the
preferable base. Another advantage of using β = 2 is that there is a way to gain
an extra bit of significance.1 Since floating-point numbers are always
normalized, the most significant bit of the significand is always 1, and there is
no reason to waste a bit of storage representing it. Formats that use this trick
are said to have a hidden bit. It was already pointed out in “Floating-point
Formats” on page 174 that this requires a special convention for 0. The method
given there was that an exponent of emin - 1 and a significand of all zeros

represents not , but rather 0.

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits for
the exponent, and 23 bits for the significand. However, it uses a hidden bit, so
the significand is 24 bits (p = 24), even though it is encoded using only 23 bits.

Precision

The IEEE standard defines four different precisions: single, double, single-
extended, and double-extended. In 754, single and double precision
correspond roughly to what most floating-point hardware provides. Single
precision occupies a single 32 bit word, double precision two consecutive 32 bit
words. Extended precision is a format that offers at least a little extra precision
and exponent range (Table D-1).

1. This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes
this idea to Konrad Zuse.

Table D-1 IEEE 754 Format Parameters

Parameter

Format

Single
Single-

Extended
Double

Double-
Extended

p 24 ³  32 53 ³  64

emax +127 ³  1023 +1023 > 16383

1.0 2emin 1–×
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The IEEE standard only specifies a lower bound on how many extra bits
extended precision provides. The minimum allowable double-extended format
is sometimes referred to as 80-bit format, even though the table shows it using
79 bits. The reason is that hardware implementations of extended precision
normally don’t use a hidden bit, and so would use 80 rather than 79 bits.1

The standard puts the most emphasis on extended precision, making no
recommendation concerning double precision, but strongly recommending that
Implementations should support the extended format corresponding to the widest basic
format supported, …

One motivation for extended precision comes from calculators, which will
often display 10 digits, but use 13 digits internally. By displaying only 10 of the
13 digits, the calculator appears to the user as a “black box” that computes
exponentials, cosines, etc. to 10 digits of accuracy.  For the calculator to
compute functions like exp, log and cos to within 10 digits with reasonable
efficiency, it needs a few extra digits to work with. It isn’t hard to find a simple
rational expression that approximates log with an error of 500 units in the last
place. Thus computing with 13 digits gives an answer correct to 10 digits. By
keeping these extra 3 digits hidden, the calculator presents a simple model to
the operator.

1. According to Kahan, extended precision has 64 bits of significand because that was the widest precision
across which carry propagation could be done on the Intel 8087 without increasing the cycle time [Kahan
1988].

emin -126 ≤ -1022 -1022 ≤  -16382

Exponent width in
bits

8 ≤ 11 11 ³  15

Format width in bits 32 ³  43 64 ³  79

Table D-1 IEEE 754 Format Parameters

Parameter

Format

Single
Single-

Extended
Double

Double-
Extended
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Extended precision in the IEEE standard serves a similar function. It enables
libraries to efficiently compute quantities to within about .5 ulp  in single (or
double) precision, giving the user of those libraries a simple model, namely
that each primitive operation, be it a simple multiply or an invocation of log,
returns a value accurate to within about .5 ulp . However, when using
extended precision, it is important to make sure that its use is transparent to
the user. For example, on a calculator, if the internal representation of a
displayed value is not rounded to the same precision as the display, then the
result of further operations will depend on the hidden digits and appear
unpredictable to the user.

To illustrate extended precision further, consider the problem of converting
between IEEE 754 single precision and decimal. Ideally, single precision
numbers will be printed with enough digits so that when the decimal number
is read back in, the single precision number can be recovered. It turns out that
9 decimal digits are enough to recover a single precision binary number (see
“Binary to Decimal Conversion” on page 236). When converting a decimal
number back to its unique binary representation, a rounding error as small as 1
ulp  is fatal, because it will give the wrong answer. Here is a situation where
extended precision is vital for an efficient algorithm. When single-extended is
available, a very straightforward method exists for converting a decimal
number to a single precision binary one. First read in the 9 decimal digits as an
integer N, ignoring the decimal point. From Table D-1, p ≥ 32, and since
109 < 232 ≈ 4.3 × 109, N can be represented exactly in single-extended. Next find
the appropriate power 10P necessary to scale N. This will be a combination of
the exponent of the decimal number, together with the position of the (up until
now) ignored decimal point. Compute 10|P|. If |P| ≤ 13, then this is also
represented exactly, because 1013 = 213513, and 513 < 232. Finally multiply (or
divide if p < 0) N and 10|P|. If this last operation is done exactly, then the
closest binary number is recovered. “Binary to Decimal Conversion” on
page 236 shows how to do the last multiply (or divide) exactly. Thus for |P| ≤
13, the use of the single-extended format enables 9 digit decimal numbers to be
converted to the closest binary number (i.e. exactly rounded). If |P| > 13, then
single-extended is not enough for the above algorithm to always compute the
exactly rounded binary equivalent, but Coonen [1984] shows that it is enough
to guarantee that the conversion of binary to decimal and back will recover the
original binary number.
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If double precision is supported, then the algorithm above would be run in
double precision rather than single-extended, but to convert double precision
to a 17 digit decimal number and back would require the double-extended
format.

Exponent

Since the exponent can be positive or negative, some method must be chosen
to represent its sign. Two common methods of representing signed numbers
are sign/magnitude and two’s complement. Sign/magnitude is the system
used for the sign of the significand in the IEEE formats: one bit is used to hold
the sign, the rest of the bits represent the magnitude of the number. The two’s
complement representation is often used in integer arithmetic. In this scheme,
a number in the range [-2p-1, 2p-1 - 1] is represented by the smallest nonnegative
number that is congruent to it modulo 2p.

The IEEE binary standard does not use either of these methods to represent the
exponent, but instead uses a biased representation. In the case of single
precision, where the exponent is stored in 8 bits, the bias is 127 (for double
precision it is 1023). What this means is that if  is the value of the exponent
bits interpreted as an unsigned integer, then the exponent of the floating-point
number is  - 127. This is often called the unbiased exponent to distinguish from
the biased exponent .

Referring to Table D-1 on page 191, single precision has emax = 127 and
emin = -126. The reason for having |emin| < emax is so that the reciprocal of the

smallest number  will not overflow. Although it is true that the
reciprocal of the largest number will underflow, underflow is usually less
serious than overflow. “Base” on page 190 explained that emin - 1 is used for
representing 0, and “Special Quantities” on page 197 will introduce a use for
emax + 1.  In IEEE single precision, this means that the biased exponents range
between emin - 1 = -127 and emax + 1 = 128, whereas the unbiased exponents
range between 0 and 255, which are exactly the nonnegative numbers that can
be represented using 8 bits.

k

k
k

1 2emin⁄( )



What Every Computer Scientist Should Know About Floating-Point Arithmetic 195

D

Operations

The IEEE standard requires that the result of addition, subtraction,
multiplication and division be exactly rounded. That is, the result must be
computed exactly and then rounded to the nearest floating-point number
(using round to even). “Guard Digits” on page 178 pointed out that computing
the exact difference or sum of two floating-point numbers can be very
expensive when their exponents are substantially different. That section
introduced guard digits, which provide a practical way of computing
differences while guaranteeing that the relative error is small. However,
computing with a single guard digit will not always give the same answer as
computing the exact result and then rounding. By introducing a second guard
digit and a third sticky bit, differences can be computed at only a little more
cost than with a single guard digit, but the result is the same as if the difference
were computed exactly and then rounded [Goldberg 1990]. Thus the standard
can be implemented efficiently.

One reason for completely specifying the results of arithmetic operations is to
improve the portability of software. When a program is moved between two
machines and both support IEEE arithmetic, then if any intermediate result
differs, it must be because of software bugs, not from differences in arithmetic.
Another advantage of precise specification is that it makes it easier to reason
about floating-point. Proofs about floating-point are hard enough, without
having to deal with multiple cases arising from multiple kinds of arithmetic.
Just as integer programs can be proven to be correct, so can floating-point
programs, although what is proven in that case is that the rounding error of
the result satisfies certain bounds. Theorem 4 is an example of such a proof.
These proofs are made much easier when the operations being reasoned about
are precisely specified. Once an algorithm is proven to be correct for IEEE
arithmetic, it will work correctly on any machine supporting the IEEE
standard.

Brown [1981] has proposed axioms for floating-point that include most of the
existing floating-point hardware. However, proofs in this system cannot verify
the algorithms of sections, “Cancellation” on page 179 and, “Exactly Rounded
Operations” on page 185, which require features not present on all hardware.
Furthermore, Brown’s axioms are more complex than simply defining
operations to be performed exactly and then rounded. Thus proving theorems
from Brown’s axioms is usually more difficult than proving them assuming
operations are exactly rounded.



196 Numerical Computation Guide

D

There is not complete agreement on what operations a floating-point standard
should cover. In addition to the basic operations +, -, × and /, the IEEE
standard also specifies that square root, remainder, and conversion between
integer and floating-point be correctly rounded. It also requires that conversion
between internal formats and decimal be correctly rounded (except for very
large numbers). Kulisch and Miranker [1986] have proposed adding inner
product to the list of operations that are precisely specified. They note that
when inner products are computed in IEEE arithmetic, the final answer can be
quite wrong. For example sums are a special case of inner products, and the
sum ((2 × 10-30 + 1030) - 1030) - 10-30 is exactly equal to 10-30, but on a machine
with IEEE arithmetic the computed result will be -10-30. It is possible to
compute inner products to within 1 ulp  with less hardware than it takes to
implement a fast multiplier [Kirchner and Kulish 1987].1 2

All the operations mentioned in the standard are required to be exactly
rounded except conversion between decimal and binary. The reason is that
efficient algorithms for exactly rounding all the operations are known, except
conversion. For conversion, the best known efficient algorithms produce
results that are slightly worse than exactly rounded ones [Coonen 1984].

The IEEE standard does not require transcendental functions to be exactly
rounded because of the table maker’s dilemma. To illustrate, suppose you are
making a table of the exponential function to 4 places. Then
exp(1.626) = 5.0835. Should this be rounded to 5.083 or 5.084? If exp(1.626) is
computed more carefully, it becomes 5.08350. And then 5.083500. And then
5.0835000. Since exp is transcendental, this could go on arbitrarily long before
distinguishing whether exp(1.626) is 5.083500…0ddd or 5.0834999…9ddd. Thus
it is not practical to specify that the precision of transcendental functions be the
same as if they were computed to infinite precision and then rounded. Another
approach would be to specify transcendental functions algorithmically. But
there does not appear to be a single algorithm that works well across all
hardware architectures. Rational approximation, CORDIC,3 and large tables

1. Some arguments against including inner product as one of the basic operations are presented by Kahan and
LeBlanc [1985].

2. Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product
per clockcycle.  The additionally needed hardware compares to the multiplier array needed anyway for that
speed.

3. CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing
transcendental functions that uses mostly shifts and adds (i.e., very few multiplications and divisions)
[Walther 1971]. It is the method additionally  needed hardware compares to the multiplier array  needed
anyway for that speed.  d used on both the Intel 8087 and the Motorola 68881.
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are three different techniques that are used for computing transcendentals on
contemporary machines. Each is appropriate for a different class of hardware,
and at present no single algorithm works acceptably over the wide range of
current hardware.

Special Quantities

On some floating-point hardware every bit pattern represents a valid floating-
point number. The IBM System/370 is an example of this. On the other hand,
the VAX™ reserves some bit patterns to represent special numbers called
reserved operands. This idea goes back to the CDC 6600, which had bit patterns
for the special quantities INDEFINITE and INFINITY.

The IEEE standard continues in this tradition and has NaNs (Not a Number) and
infinities. Without any special quantities, there is no good way to handle
exceptional situations like taking the square root of a negative number, other
than aborting computation. Under IBM System/370 FORTRAN, the default
action in response to computing the square root of a negative number like -4
results in the printing of an error message. Since every bit pattern represents a
valid number, the return value of square root must be
some floating-point number. In the case of System/370 FORTRAN,
is returned. In IEEE arithmetic, a NaN is returned in this situation.

The IEEE standard specifies the following special values (see Table D-2): ± 0,
denormalized numbers, ±∞ and NaNs (there is more than one NaN, as explained
in the next section). These special values are all encoded with exponents of
either emax + 1 or emin - 1 (it was already pointed out that 0 has an exponent of
emin - 1).

Table D-2 IEEE 754 Special Values

Exponent Fraction Represents

e = emin - 1  f =  0  ±0

e = emin - 1  f ≠ 0

emin ≤ e ≤ emax  —  1.f × 2e

e = emax + 1  f =  0  ±∞

e = emax + 1  f ≠ 0  NaN

4– 2=

0.f 2emin×
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NaNs

Traditionally, the computation of 0/0 or  has been treated as an
unrecoverable error which causes a computation to halt. However, there are
examples where it makes sense for a computation to continue in such a
situation. Consider a subroutine that finds the zeros of a function f, say
zero(f) . Traditionally, zero finders require the user to input an interval [a, b]
on which the function is defined and over which the zero finder will search.
That is, the subroutine is called as zero(f , a, b) . A more useful zero finder
would not require the user to input this extra information. This more general
zero finder is especially appropriate for calculators, where it is natural to
simply key in a function, and awkward to then have to specify the domain.
However, it is easy to see why most zero finders require a domain. The zero
finder does its work by probing the function f  at various values. If it probed
for a value outside the domain of f , the code for f  might well compute 0/0 or

, and the computation would halt, unnecessarily aborting the zero finding
process.

This problem can be avoided by introducing a special value called NaN, and

specifying that the computation of expressions like 0/0 and  produce NaN,
rather than halting. A list of some of the situations that can cause a NaN are
given in Table D-3. Then when zero(f)  probes outside the domain of f , the
code for f  will return NaN, and the zero finder can continue. That is, zero(f)
is not “punished” for making an incorrect guess. With this example in mind, it
is easy to see what the result of combining a NaN with an ordinary floating-
point number should be. Suppose that the final statement of f  is
return(-b + sqrt(d))/(2*a) . If d < 0, then f  should return a NaN. Since
d < 0, sqrt(d)  is a NaN, and -b + sqrt(d)  will be a NaN, if the sum of a NaN

1–

1–

1–
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and any other number is a NaN. Similarly if one operand of a division
operation is a NaN, the quotient should be a NaN. In general, whenever a NaN
participates in a floating-point operation, the result is another NaN.

Another approach to writing a zero solver that doesn’t require the user to
input a domain is to use signals. The zero-finder could install a signal handler
for floating-point exceptions. Then if f  was evaluated outside its domain and
raised an exception, control would be returned to the zero solver. The problem
with this approach is that every language has a different method of handling
signals (if it has a method at all), and so it has no hope of portability.

In IEEE 754, NaNs are often represented as floating-point numbers with the
exponent emax + 1 and nonzero significands. Implementations are free to put
system-dependent information into the significand. Thus there is not a unique
NaN, but rather a whole family of NaNs. When a NaN and an ordinary floating-
point number are combined, the result should be the same as the NaN operand.
Thus if the result of a long computation is a NaN, the system-dependent
information in the significand will be the information that was generated when
the first NaN in the computation was generated. Actually, there is a caveat to
the last statement. If both operands are NaNs, then the result will be one of
those NaNs, but it might not be the NaN that was generated first.

Infinity

Just as NaNs provide a way to continue a computation when expressions like

0/0 or  are encountered, infinities provide a way to continue when an
overflow occurs. This is much safer than simply returning the largest

Table D-3 Operations That Produce a NaN

Operation NaN Produced By

+  ∞ + (- ∞)

x  0 × ∞

/  0/0, ∞/∞

REM  x REM 0, ∞ REM y

 (when x < 0)x

1–
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representable number. As an example, consider computing , when
β = 10, p = 3, and emax = 98. If x = 3 × 1070 and y = 4 × 1070, then x2 will overflow,
and be replaced by 9.99 × 1098. Similarly y2, and x2 + y2 will each overflow in
turn, and be replaced by 9.99 × 1098. So the final result will be

, which is drastically wrong: the correct answer

is 5 × 1070. In IEEE arithmetic, the result of x2 is ∞, as is y2, x2 + y2 and .
So the final result is ∞, which is safer than returning an ordinary floating-point
number that is nowhere near the correct answer.1

The division of 0 by 0 results in a NaN. A nonzero number divided by 0,
however, returns infinity: 1/0 = ∞, -1/0 = -∞. The reason for the distinction is
this: if f(x) → 0 and g(x) → 0 as x approaches some limit, then f(x)/g(x) could
have any value. For example, when f(x) = sin x and g(x) = x, then f(x)/g(x) → 1
as x → 0.  But when f(x) = 1 - cos x, f(x)/g(x) → 0. When thinking of 0/0 as the
limiting situation of a quotient of two very small numbers, 0/0 could represent
anything. Thus in the IEEE standard, 0/0 results in a NaN. But when c > 0, f(x)
→ c,  and g(x)→0, then f(x)/g(x) → ±∞, for any analytic functions f and g.  If
g(x) < 0 for small x, then f(x)/g(x) → -∞, otherwise the limit is +∞. So the IEEE
standard defines c/0 = ±∞, as long as c ≠ 0. The sign of ∞ depends on the signs
of c and 0 in the usual way, so that -10/0 = -∞, and -10/-0 = +∞. You can
distinguish between getting ∞ because of overflow and getting ∞ because of
division by zero by checking the status flags (which will be discussed in detail
in section “Flags” on page 210). The overflow flag will be set in the first case,
the division by zero flag in the second.

The rule for determining the result of an operation that has infinity as an
operand is simple: replace infinity with a finite number x and take the limit as
x → ∞. Thus 3/∞ = 0, because .  Similarly, 4 - ∞  = -∞, and

= ∞. When the limit doesn’t exist, the result is a NaN, so ∞/∞ will be a NaN
(Table D-3 on page 199 has additional examples). This agrees with the
reasoning used to conclude that 0/0 should be a NaN.

When a subexpression evaluates to a NaN, the value of the entire expression is
also a NaN. In the case of ±∞ however, the value of the expression might be an
ordinary floating-point number because of rules like 1/∞ = 0. Here is a

1. Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to ∞, it is possible to
change the default (see “Rounding Modes” on page 209)

x2 y2+

9.99 1098× 3.16 1049×=

x2 y2+

3 x⁄
x ∞→
lim 0=

∞
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practical example that makes use of the rules for infinity arithmetic. Consider
computing the function x/(x2 + 1). This is a bad formula, because not only will

it overflow when x is larger than , but infinity arithmetic will give
the wrong answer because it will yield 0, rather than a number near 1/x.
However, x/(x2 + 1) can be rewritten as 1/(x + x-1). This improved expression
will not overflow prematurely and because of infinity arithmetic will have the
correct value when x= 0: 1/(0 + 0-1) = 1/(0 + ∞) = 1/∞ = 0. Without infinity
arithmetic, the expression 1/(x + x-1) requires a test for x = 0, which not only
adds extra instructions, but may also disrupt a pipeline. This example
illustrates a general fact, namely that infinity arithmetic often avoids the need
for special case checking; however, formulas need to be carefully inspected to
make sure they do not have spurious behavior at infinity (as x/(x2 + 1) did).

Signed Zero

Zero is represented by the exponent emin - 1 and a zero significand. Since the
sign bit can take on two different values, there are two zeros, +0 and -0. If a
distinction were made when comparing +0 and -0, simple tests like if (x = 0)
would have very unpredictable behavior, depending on the sign of x . Thus
 the IEEE standard defines comparison so that +0 = -0, rather than -0 < +0.
Although it would be possible always to ignore the sign of zero, the IEEE
standard does not do so. When a multiplication or division involves a signed
zero, the usual sign rules apply in computing the sign of the answer. Thus
3⋅(+0) = +0, and +0/-3 = -0. If zero did not have a sign, then the relation
1/(1/x) = x would fail to hold when x = ±∞. The reason is that 1/-∞ and 1/+∞
both result in 0, and 1/0 results in +∞, the sign information having been lost.
One way to restore the identity 1/(1/x) = x is to only have one kind of infinity,
however that would result in the disastrous consequence of losing the sign of
an overflowed quantity.

Another example of the use of signed zero concerns underflow and functions
that have a discontinuity at 0, such as log. In IEEE arithmetic, it is natural to
define log 0 = -∞ and log x to be a NaN when x < 0. Suppose that x represents a
small negative number that has underflowed to zero. Thanks to signed zero, x
will be negative, so log can return a NaN. However, if there were no signed
zero, the log function could not distinguish an underflowed negative number
from 0, and would therefore have to return -∞. Another example of a function
with a discontinuity at zero is the signum function, which returns the sign of a
number.

ββemax 2⁄
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Probably the most interesting use of signed zero occurs in complex arithmetic.

To take a simple example, consider the equation . This is

certainly true when z ≥ 0. If z = -1, the obvious computation gives

  and . Thus,

! The problem can be traced to the fact that square root is
multi-valued, and there is no way to select the values so that it is continuous in
the entire complex plane. However, square root is continuous if a branch cut
consisting of all negative real numbers is excluded from consideration. This
leaves the problem of what to do for the negative real numbers, which are of
the form -x + i0, where x > 0. Signed zero provides a perfect way to resolve this
problem. Numbers of the

form x + i(+0) have one sign  and numbers of the form x + i(-0) on the

other side of the branch cut have the other sign . In fact, the natural

formulas for computing  will give these results.

Back to .  If z =1 = -1 + i0, then 1/z = 1/(-1 + i0) =

[(-1- i0)]/[(-1 + i0)(-1 - i0)]  = (-1 - i0)/((-1)2 - 02)  = -1 + i(-0), and so

, while .  Thus IEEE
arithmetic preserves this identity for all z. Some more sophisticated examples
are given by Kahan [1987]. Although distinguishing between +0 and -0 has
advantages, it can occasionally be confusing. For example, signed zero destroys
the relation x = y ⇔ 1/x = 1/y, which is false when x = +0 and y = -0. However,
the IEEE committee decided that the advantages of utilizing the sign of zero
outweighed the disadvantages.

Denormalized Numbers

Consider normalized floating-point numbers with β = 10, p = 3, and emin = -98.
The numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear to be perfectly ordinary
floating-point numbers, which are more than a factor of 10 larger than the
smallest floating-point number 1.00 × 10-98.  They have a strange property,

1 z⁄ 1 z( )⁄=

1 1–( )⁄ 1– i= = 1 1–( )⁄ 1 i⁄ i–= =

1 z⁄ 1 z( )⁄≠

i x( )

i x–( )

1 z⁄ 1 z( )⁄=

1 z⁄ 1– i 0–( )+ i–= = 1 z( )⁄ 1 i⁄ i–= =



What Every Computer Scientist Should Know About Floating-Point Arithmetic 203

D

however: x y = 0 even though x ≠ y! The reason is that x - y = .06 × 10 -97

= 6.0 × 10-99 is too small to be represented as a normalized number, and so must
be flushed to zero. How important is it to preserve the property

x = y ⇔ x - y = 0 ? (10)

It’s very easy to imagine writing the code fragment,
if (x ≠ y) then z = 1/(x-y) , and much later having a program fail due to a
spurious division by zero. Tracking down bugs like this is frustrating and time
consuming. On a more philosophical level, computer science textbooks often
point out that even though it is currently impractical to prove large programs
correct, designing programs with the idea of proving them often results in
better code. For example, introducing invariants is quite useful, even if they
aren’t going to be used as part of a proof. Floating-point code is just like any
other code: it helps to have provable facts on which to depend. For example,
when analyzing formula (6), it was very helpful to know that
x/2 < y < 2x ⇒ x y = x - y. Similarly, knowing that (10) is true makes writing
reliable floating-point code easier. If it is only true for most numbers, it cannot
be used to prove anything.

The IEEE standard uses denormalized1 numbers, which guarantee (10), as well
as other useful relations. They are the most controversial part of the standard
and probably accounted for the long delay in getting 754 approved. Most high
performance hardware that claims to be IEEE compatible does not support
denormalized numbers directly, but rather traps when consuming or
producing denormals, and leaves it to software to simulate the IEEE standard.2

The idea behind denormalized numbers goes back to Goldberg [1967] and is
very simple. When the exponent is emin, the significand does not have to be
normalized, so that when β = 10, p = 3 and emin = -98, 1.00 × 10-98 is no longer
the smallest floating-point number, because 0.98 × 10-98 is also a floating-point
number.

1. They are called subnormal in 854, denormal in 754.

2. This is the cause of one of the most troublesome aspects of the standard. Programs that frequently
underflow often run noticeably slower on hardware that uses software traps.
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There is a small snag when β = 2 and a hidden bit is being used, since a
number with an exponent of emin will always have a significand greater than or
equal to 1.0 because of the implicit leading bit. The solution is similar to that
used to represent 0, and is summarized in Table D-2 on page 197. The exponent
emin is used to represent denormals. More formally, if the bits in the significand
field are b1, b2, …, bp - 1, and the value of the exponent is e, then when
e > emin - 1, the number being represented is 1.b1b2…bp - 1 × 2e whereas when e =
emin - 1, the number being represented is 0.b1b2…bp - 1 × 2e + 1. The +1 in the
exponent is needed because denormals have an exponent of emin, not emin - 1.

Recall the example of β = 10, p = 3, emin = -98, x = 6.87 × 10-97 and y = 6.81 × 10-97

presented at the beginning of this section. With denormals, x - y does not flush
to zero but is instead represented by the denormalized number .6 × 10-98. This
behavior is called gradual underflow. It is easy to verify that (10) always holds
when using gradual underflow.

Figure D-2 Flush To Zero Compared With Gradual Underflow

Figure D-2 illustrates denormalized numbers. The top number line in the figure
shows normalized floating-point numbers. Notice the gap between 0 and the
smallest normalized number . If the result of a floating-point
calculation falls into this gulf, it is flushed to zero. The bottom number line
shows what happens when denormals are added to the set of floating-point
numbers. The “gulf” is filled in, and when the result of a calculation is less
than , it is represented by the nearest denormal. When
denormalized numbers are added to the number line, the spacing between
adjacent floating-point numbers varies in a regular way: adjacent spacings are
either the same length or differ by a factor of β. Without denormals, the

spacing abruptly changes from  to , which is a factor of

0 βemin βemin 1+ βemin 2+ βemin 3+

0 βemin βemin 1+ βemin 2+ βemin 3+

1.0 βemin×

1.0 βemin×

β p– 1+ βemin βemin
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, rather than the orderly change by a factor of β. Because of this, many
algorithms that can have large relative error for normalized numbers close to
the underflow threshold are well-behaved in this range when gradual
underflow is used.

Without gradual underflow, the simple expression x - y can have a very large
relative error for normalized inputs, as was seen above for x = 6.87 × 10-97 and
y = 6.81 × 10-97. Large relative errors can happen even without cancellation, as
the following example shows [Demmel 1984]. Consider dividing two complex
numbers, a + ib and c + id. The obvious formula

⋅ i

suffers from the problem that if either component of the denominator c + id is

larger than , the formula will overflow, even though the final result
may be well within range. A better method of computing the quotients is to
use Smith’s formula:

(11)

Applying Smith’s formula to (2 ⋅ 10-98 + i10-98)/(4 ⋅ 10-98 + i(2 ⋅ 10-98)) gives the
correct answer of 0.5 with gradual underflow. It yields 0.4 with flush to zero,
an error of 100 ulps . It is typical for denormalized numbers to guarantee error

bounds for arguments all the way down to 1.0 x .

Exceptions, Flags and Trap Handlers

When an exceptional condition like division by zero or overflow occurs in IEEE
arithmetic, the default is to deliver a result and continue. Typical of the default

βp 1–
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-------------- ac bd+

c2 d2+
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c2 d2+
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results are NaN for 0/0 and , and ∞ for 1/0 and overflow. The preceding
sections gave examples where proceeding from an exception with these default
values was the reasonable thing to do. When any exception occurs, a status flag
is also set. Implementations of the IEEE standard are required to provide users
with a way to read and write the status flags. The flags are “sticky” in that
once set, they remain set until explicitly cleared. Testing the flags is the only
way to distinguish 1/0, which is a genuine infinity from an overflow.

Sometimes continuing execution in the face of exception conditions is not
appropriate. “Infinity” on page 199 gave the example of x/(x2 + 1). When x >

, the denominator is infinite, resulting in a final answer of 0, which
is totally wrong. Although for this formula the problem can be solved by
rewriting it as 1/(x + x-1), rewriting may not always solve the problem. The
IEEE standard strongly recommends that implementations allow trap handlers
to be installed. Then when an exception occurs, the trap handler is called
instead of setting the flag. The value returned by the trap handler will be used
as the result of the operation. It is the responsibility of the trap handler to
either clear or set the status flag; otherwise, the value of the flag is allowed to
be undefined.

The IEEE standard divides exceptions into 5 classes: overflow, underflow,
division by zero, invalid operation and inexact. There is a separate status flag
for each class of exception. The meaning of the first three exceptions is self-
evident. Invalid operation covers the situations listed in Table D-3 on page 199,
and any comparison that involves a NaN.  The default result of an operation
that causes an invalid exception is to return a NaN, but the converse is not true.
When one of the operands to an operation is a NaN, the result is a NaN but no
invalid exception is raised unless the operation also satisfies one of the
conditions in Table D-3 on page 199.1

Table D-4 Exceptions in IEEE 754*

Exception
Result when traps

disabled
Argument to trap

handler

overflow ±∞ or ±xmax round(x2-α)

underflow 0,  or denormal round(x2α)

divide by zero ±∞ operands

1–
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*x is the exact result of the operation, α = 192 for  single precision, 1536 for double, and

xmax = 1.11 …11 × .

The inexact exception is raised when the result of a floating-point operation is
not exact. In the β = 10, p = 3 system, 3.5 ⊗ 4.2 = 14.7 is exact, but
3.5 ⊗ 4.3 = 15.0 is not exact (since 3.5 ⋅ 4.3 = 15.05), and raises an inexact
exception. “Binary to Decimal Conversion” on page 236 discusses an algorithm
that uses the inexact exception. A summary of the behavior of all five
exceptions is given in Table D-4.

There is an implementation issue connected with the fact that the inexact
exception is raised so often. If floating-point hardware does not have flags of
its own, but instead interrupts the operating system to signal a floating-point
exception, the cost of inexact exceptions could be prohibitive. This cost can be
avoided by having the status flags maintained by software. The first time an
exception is raised, set the software flag for the appropriate class, and tell the
floating-point hardware to mask off that class of exceptions. Then all further
exceptions will run without interrupting the operating system. When a user
resets that status flag, the hardware mask is re-enabled.

Trap Handlers

One obvious use for trap handlers is for backward compatibility. Old codes
that expect to be aborted when exceptions occur can install a trap handler that
aborts the process. This is especially useful for codes with a loop like

1. No invalid exception is raised unless a “trapping” NaN is involved in the operation.  See section 6.2 of IEEE
Std 754-1985.  -- Ed.

invalid NaN operands

inexact round(x) round(x)

Table D-4 Exceptions in IEEE 754*

Exception
Result when traps

disabled
Argument to trap

handler

2emax
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do S until (x >= 100) . Since comparing a NaN to a number with <, ≤, >, ≥, or
=  (but not ≠) always returns false, this code will go into an infinite loop if x
ever becomes a NaN.

There is a more interesting use for trap handlers that comes up when
computing products such as  that could potentially overflow. One

solution is to use logarithms, and compute exp  instead. The problem
with this approach is that it is less accurate, and that it costs more than the
simple expression , even if there is no overflow. There is another solution
using trap handlers called over/underflow counting that avoids both of these
problems [Sterbenz 1974].

The idea is as follows. There is a global counter initialized to zero. Whenever
the partial product  overflows for some k, the trap handler
increments the counter by one and returns the overflowed quantity with the
exponent wrapped around. In IEEE 754 single precision, emax = 127, so if
pk = 1.45 × 2130, it will overflow and cause the trap handler to be called, which
will wrap the exponent back into range, changing pk to 1.45 × 2-62 (see below).
Similarly, if pk underflows, the counter would be decremented, and negative
exponent would get wrapped around into a positive one. When all the
multiplications are done, if the counter is zero then the final product is pn. If
the counter is positive, the product overflowed, if the counter is negative, it
underflowed. If none of the partial products are out of range, the trap handler
is never called and the computation incurs no extra cost. Even if there are
over/underflows, the calculation is more accurate than if it had been
computed with logarithms, because each pk was computed from pk - 1 using a
full precision multiply. Barnett [1987] discusses a formula where the full
accuracy of over/underflow counting turned up an error in earlier tables of
that formula.

IEEE 754 specifies that when an overflow or underflow trap handler is called, it
is passed the wrapped-around result as an argument. The definition of
wrapped-around for overflow is that the result is computed as if to infinite
precision, then divided by 2α, and then rounded to the relevant precision. For
underflow, the result is multiplied by 2α. The exponent α is 192 for single
precision and 1536 for double precision. This is why 1.45 x 2130 was
transformed into 1.45 × 2-62 in the example above.

Πi 1=
n xi

Σ logxi( )

Πxi

pk Πi 1=
k xi=
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Rounding Modes

In the IEEE standard, rounding occurs whenever an operation has a result that
is not exact, since (with the exception of binary decimal conversion) each
operation is computed exactly and then rounded. By default, rounding means
round toward nearest. The standard requires that three other rounding modes
be provided, namely round toward 0, round toward +∞, and round toward -∞.
When used with the convert to integer operation, round toward -∞ causes the
convert to become the floor function, while round toward +∞ is ceiling. The
rounding mode affects overflow, because when round toward 0 or round
toward -∞ is in effect, an overflow of positive magnitude causes the default
result to be the largest representable number, not +∞. Similarly, overflows of
negative magnitude will produce the largest negative number when round
toward +∞ or round toward 0 is in effect.

One application of rounding modes occurs in interval arithmetic (another is
mentioned in “Binary to Decimal Conversion” on page 236). When using
interval arithmetic, the sum of two numbers x and y is an interval ,
where  is x ⊕ y rounded toward -∞, and  is x ⊕ y rounded toward +∞. The
exact result of the addition is contained within the interval . Without
rounding modes, interval arithmetic is usually implemented by computing

 and , where  is machine epsilon.1

This results in overestimates for the size of the intervals. Since the result of an
operation in interval arithmetic is an interval, in general the input to an
operation will also be an interval. If two intervals , and , are
added, the result is , where  is  with the rounding mode set to
round toward -∞, and  is  with the rounding mode set to round toward
+∞.

When a floating-point calculation is performed using interval arithmetic, the
final answer is an interval that contains the exact result of the calculation. This
is not very helpful if the interval turns out to be large (as it often does), since
the correct answer could be anywhere in that interval. Interval arithmetic
makes more sense when used in conjunction with a multiple precision floating-
point package. The calculation is first performed with some precision p. If
interval arithmetic suggests that the final answer may be inaccurate, the
computation is redone with higher and higher precisions until the final interval
is a reasonable size.

1.   may be greater than  if both x and y are negative.  -- Ed.

z,z[ ]
z z
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Flags

The IEEE standard has a number of flags and modes. As discussed above, there
is one status flag for each of the five exceptions: underflow, overflow, division
by zero, invalid operation and inexact. There are four rounding modes: round
toward nearest, round toward +∞, round toward 0, and round toward -∞. It is
strongly recommended that there be an enable mode bit for each of the five
exceptions. This section gives some simple examples of how these modes and
flags can be put to good use. A more sophisticated example is discussed in
“Binary to Decimal Conversion” on page 236.

Consider writing a subroutine to compute xn, where n is an integer. When
n > 0, a simple routine like

If n < 0, then a more accurate way to compute xn is not to call
PositivePower(1/x, -n)  but rather 1/PositivePower(x, -n) , because
the first expression multiplies n quantities each of which have a rounding error
from the division (i.e., 1/x). In the second expression these are exact (i.e., x),
and the final division commits just one additional rounding error.
Unfortunately, these is a slight snag in this strategy. If PositivePower(x, -
n)  underflows, then either the underflow trap handler will be called, or else
the underflow status flag will be set. This is incorrect, because if x-n

underflows, then xn will either overflow or be in range.1 But since the IEEE

1. It can be in range because if x < 1, n <  0  and x-n is just a tiny bit smaller than the underflow threshold ,
then , and so may not overflow, since in all IEEE precisions, -emin < emax.

PositivePower(x,n) {
 while (n is even) {
     x = x*x
     n = n/2
 }
 u = x
 while (true) {
     n = n/2
     if (n==0) return u
     x = x*x
     if (n is odd) u = u*x
 }

2emin

xn 2 emin– 2emax<≈
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standard gives the user access to all the flags, the subroutine can easily correct
for this. It simply turns off the overflow and underflow trap enable bits and
saves the overflow and underflow status bits. It then computes
1/PositivePower(x, -n) . If neither the overflow nor underflow status bit is
set, it restores them together with the trap enable bits. If one of the status bits
is set, it restores the flags and redoes the calculation using
PositivePower(1/x, -n) , which causes the correct exceptions to occur.

Another example of the use of flags occurs when computing arccos via the

formula arccos x = 2 arctan . If arctan(∞) evaluates to π/2, then

arccos(-1) will correctly evaluate to 2⋅arctan(∞) = π, because of infinity
arithmetic. However, there is a small snag, because the computation of (1 -
x)/(1 + x) will cause the divide by zero exception flag to be set, even though
arccos(-1) is not exceptional. The solution to this problem is straightforward.
Simply save the value of the divide by zero flag before computing arccos, and
then restore its old value after the computation.

Systems Aspects

The design of almost every aspect of a computer system requires knowledge
about floating-point. Computer architectures usually have floating-point
instructions, compilers must generate those floating-point instructions, and the
operating system must decide what to do when exception conditions are raised
for those floating-point instructions. Computer system designers rarely get
guidance from numerical analysis texts, which are typically aimed at users and
writers of software, not at computer designers. As an example of how plausible
design decisions can lead to unexpected behavior, consider the following
BASIC program.

When compiled and run using Borland’s Turbo Basic on an IBM PC, the
program prints Not Equal ! This example will be analyzed in the next section,
“Instruction Sets.”

q = 3.0/7.0
if q = 3.0/7.0 then print "Equal":
    else print "Not Equal"

1 x–
1 x+
------------
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Incidentally, some people think that the solution to such anomalies is never to
compare floating-point numbers for equality, but instead to consider them
equal if they are within some error bound E. This is hardly a cure-all because it
raises as many questions as it answer. What should the value of E be? If x < 0
and y > 0 are within E, should they really be considered to be equal, even
though they have different signs? Furthermore, the relation defined by this
rule, a ~ b ⇔ |a - b| < E, is not an equivalence relation because a ~ b and b ~ c
does not imply that a ~ c.

Instruction Sets

It is quite common for an algorithm to require a short burst of higher precision
in order to produce accurate results. One example occurs in the quadratic

formula ( )/2a. As discussed on page 234, when b2 ≈ 4ac,
rounding error can contaminate up to half the digits in the roots computed
with the quadratic formula. By performing the subcalculation of b2 - 4ac in
double precision, half the double precision bits of the root are lost, which
means that all the single precision bits are preserved.

The computation of b2 -4ac in double precision when each of the quantities a, b,
and c are in single precision is easy if there is a multiplication instruction that
takes two single precision numbers and produces a double precision result. In
order to produce the exactly rounded product of two p-digit numbers, a
multiplier needs to generate the entire 2p bits of product, although it may
throw bits away as it proceeds. Thus, hardware to compute a double precision
product from single precision operands will normally be only a little more
expensive than a single precision multiplier, and much cheaper than a double
precision multiplier. Despite this, modern instruction sets tend to provide only
instructions that produce a result of the same precision as the operands.1

If an instruction that combines two single precision operands to produce a
double precision product was only useful for the quadratic formula, it
wouldn’t be worth adding to an instruction set. However, this instruction has
many other uses. Consider the problem of solving a system of linear equations,

1. This is probably because designers like “orthogonal” instruction sets, where the precisions of a floating-
point instruction are independent of the actual operation. Making a special case for multiplication destroys
this orthogonality.

b– b2 4ac–±
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a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn=   b1

a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn=   b2

   ⋅ ⋅ ⋅

an1x1 + an2x2 + ⋅ ⋅ ⋅+ annxn=   bn

which can be written in matrix form as Ax = b, where

Suppose that a solution x(1) is computed by some method, perhaps Gaussian
elimination. There is a simple way to improve the accuracy of the result called
iterative improvement. First compute

ξ = Ax(1) - b (12)

and then solve the system

Ay  =  ξ (13)

Note that if x(1) is an exact solution, then ξ is the zero vector, as is y. In general,
the computation of ξ and y will incur rounding error, so
Ay ≈ ξ ≈ Ax(1) - b = A(x(1) - x), where x is the (unknown) true solution. Then
y ≈ x(1) - x, so an improved estimate for the solution is

x(2) = x(1) - y (14)

A

a11 a12 ... a1n

a21 a22 ... a2n

...
an1 an2 ... ann

 
 
 
 
 
 

=
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The three steps (12), (13), and (14) can be repeated, replacing x(1) with x(2), and
x(2) with x(3). This argument that x(i + 1) is more accurate than x(i) is only informal.
For more information, see [Golub and Van Loan 1989].

When performing iterative improvement, ξ is a vector whose elements are the
difference of nearby inexact floating-point numbers, and so can suffer from
catastrophic cancellation. Thus iterative improvement is not very useful unless
ξ = Ax(1) - b is computed in double precision. Once again, this is a case of
computing the product of two single precision numbers (A and x(1)), where the
full double precision result is needed.

To summarize, instructions that multiply two floating-point numbers and
return a product with twice the precision of the operands make a useful
addition to a floating-point instruction set. Some of the implications of this for
compilers are discussed in the next section.

Languages and Compilers

The interaction of compilers and floating-point is discussed in Farnum [1988],
and much of the discussion in this section is taken from that paper.

Ambiguity

Ideally, a language definition should define the semantics of the language
precisely enough to prove statements about programs. While this is usually
true for the integer part of a language, language definitions often have a large
grey area when it comes to floating-point. Perhaps this is due to the fact that
many language designers believe that nothing can be proven about floating-
point, since it entails rounding error. If so, the previous sections have
demonstrated the fallacy in this reasoning. This section discusses some
common grey areas in language definitions, including suggestions about how
to deal with them.

Remarkably enough, some languages don’t clearly specify that if x  is a
floating-point variable (with say a value of 3.0/10.0 ), then every occurrence
of (say) 10.0*x  must have the same value. For example Ada, which is based
on Brown’s model, seems to imply that floating-point arithmetic only has to
satisfy Brown’s axioms, and thus expressions can have one of many possible
values. Thinking about floating-point in this fuzzy way stands in sharp
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contrast to the IEEE model, where the result of each floating-point operation is
precisely defined. In the IEEE model, we can prove that (3.0/10.0)*10.0
evaluates to 3 (Theorem 7). In Brown’s model, we cannot.

Another ambiguity in most language definitions concerns what happens on
overflow, underflow and other exceptions. The IEEE standard precisely
specifies the behavior of exceptions, and so languages that use the standard as
a model can avoid any ambiguity on this point.

Another grey area concerns the interpretation of parentheses. Due to roundoff
errors, the associative laws of algebra do not necessarily hold for floating-point
numbers. For example, the expression (x+y)+z  has a totally different answer
than x+(y+z)  when x = 1030, y = -1030 and z = 1 (it is 1 in the former case, 0 in
the latter). The importance of preserving parentheses cannot be
overemphasized. The algorithms presented in theorems 3, 4 and 6 all depend
on it. For example, in Theorem 6, the formula xh = mx - (mx - x) would reduce
to xh = x if it weren’t for parentheses, thereby destroying the entire algorithm.
A language definition that does not require parentheses to be honored is
useless for floating-point calculations.

Subexpression evaluation is imprecisely defined in many languages.  Suppose
that ds  is double precision, but x  and y  are single precision. Then in the
expression ds + x*y  is the product performed in single or double precision?
Another example: in x + m/n  where m and n are integers, is the division an
integer operation or a floating-point one? There are two ways to deal with this
problem, neither of which is completely satisfactory. The first is to require that
all variables in an expression have the same type. This is the simplest solution,
but has some drawbacks. First of all, languages like Pascal that have subrange
types allow mixing subrange variables with integer variables, so it is
somewhat bizarre to prohibit mixing single and double precision variables.
Another problem concerns constants. In the expression 0.1*x , most languages
interpret 0.1 to be a single precision constant. Now suppose the programmer
decides to change the declaration of all the floating-point variables from single
to double precision. If 0.1 is still treated as a single precision constant, then
there will be a compile time error. The programmer will have to hunt down
and change every floating-point constant.

The second approach is to allow mixed expressions, in which case rules for
subexpression evaluation must be provided. There are a number of guiding
examples. The original definition of C required that every floating-point
expression be computed in double precision [Kernighan and Ritchie 1978]. This
leads to anomalies like the example at the beginning of this section. The
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expression 3.0/7.0  is computed in double precision, but if q is a single-
precision variable, the quotient is rounded to single precision for storage. Since
3/7 is a repeating binary fraction, its computed value in double precision is
different from its stored value in single precision. Thus the comparison q = 3/7
fails. This suggests that computing every expression in the highest precision
available is not a good rule.

Another guiding example is inner products. If the inner product has thousands
of terms, the rounding error in the sum can become substantial. One way to
reduce this rounding error is to accumulate the sums in double precision (this
will be discussed in more detail in “Optimizers” on page 219). If d is a double
precision variable, and x[]  and y[]  are single precision arrays, then the inner
product loop will look like d = d + x[i]*y[i] . If the multiplication is done in
single precision, than much of the advantage of double precision accumulation
is lost, because the product is truncated to single precision just before being
added to a double precision variable.

A rule that covers both of the previous two examples is to compute an
expression in the highest precision of any variable that occurs in that
expression. Then q = 3.0/7.0  will be computed entirely in single precision1

and will have the boolean value true, whereas d = d + x[i]*y[i]  will be
computed in double precision, gaining the full advantage of double precision
accumulation. However, this rule is too simplistic to cover all cases cleanly. If
dx  and dy  are double precision variables, the expression
y = x + single(dx-dy)  contains a double precision variable, but performing
the sum in double precision would be pointless, because both operands are
single precision, as is the result.

A more sophisticated subexpression evaluation rule is as follows. First assign
each operation a tentative precision, which is the maximum of the precisions of
its operands. This assignment has to be carried out from the leaves to the root
of the expression tree. Then perform a second pass from the root to the leaves.
In this pass, assign to each operation the maximum of the tentative precision
and the precision expected by the parent. In the case of q = 3.0/7.0 , every
leaf is single precision, so all the operations are done in single precision. In the
case of d = d + x[i]*y[i] , the tentative precision of the multiply operation is
single precision, but in the second pass it gets promoted to double precision,

1. This assumes the common convention that 3.0  is a single-precision constant, while 3.0D0  is a double
precision constant.
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because its parent operation expects a double precision operand. And in
y = x + single(dx-dy) , the addition is done in single precision. Farnum
[1988] presents evidence that this algorithm in not difficult to implement.

The disadvantage of this rule is that the evaluation of a subexpression depends
on the expression in which it is embedded. This can have some annoying
consequences. For example, suppose you are debugging a program and want
to know the value of a subexpression. You cannot simply type the
subexpression to the debugger and ask it to be evaluated, because the value of
the subexpression in the program depends on the expression it is embedded in.
A final comment on subexpressions: since converting decimal constants to
binary is an operation, the evaluation rule also affects the interpretation of
decimal constants. This is especially important for constants like 0.1  which are
not exactly representable in binary.

Another potential grey area occurs when a language includes exponentiation
as one of its built-in operations. Unlike the basic arithmetic operations, the
value of exponentiation is not always obvious [Kahan and Coonen 1982]. If **
is the exponentiation operator, then (-3)**3  certainly has the value -27.
However, (-3.0)**3.0  is problematical. If the **  operator checks for integer
powers, it would compute (-3.0)**3.0  as -3.03 = -27. On the other hand, if
the formula xy = eylogx is used to define **  for real arguments, then depending
on the log function, the result could be a NaN (using the natural definition of
log(x) = NaN when x < 0). If the FORTRAN CLOG function is used however,
then the answer will be -27, because the ANSI FORTRAN standard defines
CLOG(-3.0)  to be iπ + log 3 [ANSI 1978]. The programming language Ada
avoids this problem by only defining exponentiation for integer powers, while
ANSI FORTRAN prohibits raising a negative number to a real power.

In fact, the FORTRAN standard says that

Any arithmetic operation whose result is not mathematically defined is
prohibited...

Unfortunately, with the introduction of ±∞ by the IEEE standard, the meaning
of not mathematically defined is no longer totally clear cut. One definition might
be to use the method shown in section “Infinity” on page 199. For example, to
determine the value of ab, consider non-constant analytic functions f and g with
the property that f(x) → a and g(x) → b as x → 0. If f(x)g(x) always approaches
the same limit, then this should be the value of ab. This definition would set
2∞ = ∞ which seems quite reasonable. In the case of 1.0∞, when f(x) = 1 and
g(x) = 1/x the limit approaches 1, but when f(x) = 1 - x and g(x) = 1/x the limit



218 Numerical Computation Guide

D

is e-1. So 1.0∞, should be a NaN. In the case of 00, f(x)g(x) = eg(x)log f(x). Since f and g
are analytic and take on the value 0 at 0, f(x) = a1x

1 + a2x
2 + … and

g(x) = b1x
1 + b2x

2 + …. Thus limx → 0g(x) log f(x) = limx → 0x log(x(a1 + a2x + …)) =
limx → 0x log(a1x) = 0. So f(x)g(x) → e0 = 1 for all f and g, which means that

 00 = 1.1 2 Using this definition would unambiguously define the exponential
function for all arguments, and in particular would define (-3.0)**3.0  to be
-27.

The IEEE Standard

Section , “The IEEE Standard,” discussed many of the features of the IEEE
standard. However, the IEEE standard says nothing about how these features
are to be accessed from a programming language. Thus, there is usually a
mismatch between floating-point hardware that supports the standard and
programming languages like C, Pascal or FORTRAN. Some of the IEEE
capabilities can be accessed through a library of subroutine calls. For example
the IEEE standard requires that square root be exactly rounded, and the square
root function is often implemented directly in hardware. This functionality is
easily accessed via a library square root routine. However, other aspects of the
standard are not so easily implemented as subroutines. For example, most
computer languages specify at most two floating-point types, while the IEEE
standard has four different precisions (although the recommended
configurations are single plus single-extended or single, double, and double-
extended). Infinity provides another example. Constants to represent ±∞ could
be supplied by a subroutine. But that might make them unusable in places that
require constant expressions, such as the initializer of a constant variable.

A more subtle situation is manipulating the state associated with a
computation, where the state consists of the rounding modes, trap enable bits,
trap handlers and exception flags. One approach is to provide subroutines for
reading and writing the state. In addition, a single call that can atomically set a
new value and return the old value is often useful. As the examples in “Flags”
on page 210 show, a very common pattern of modifying IEEE state is to change

1. The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this restriction is removed,
then letting f be the identically 0 function gives 0 as a possible value for , and so 00 would have
to be defined to be a NaN.

2. In the case of 00, plausibility  arguments can be made, but the convincing argument is found in “Concrete
Mathematics” by Graham,  Knuth and Patashnik, and argues that 00 = 1 for the binomial theorem to work.
-- Ed.

f x( )
x 0→
lim g x(
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it only within the scope of a block or subroutine. Thus the burden is on the
programmer to find each exit from the block, and make sure the state is
restored. Language support for setting the state precisely in the scope of a
block would be very useful here. Modula-3 is one language that implements
this idea for trap handlers [Nelson 1991].

There are a number of minor points that need to be considered when
implementing the IEEE standard in a language. Since x - x = +0 for all x,1

(+0) - (+0) = +0. However, -(+0) = -0, thus -x should not be defined as 0 - x. The
introduction of NaNs can be confusing, because a NaN is never equal to any
other number (including another NaN), so x = x is no longer always true. In
fact, the expression x ≠ x is the simplest way to test for a NaN if the IEEE
recommended function Isnan  is not provided. Furthermore, NaNs are
unordered with respect to all other numbers, so x ≤ y cannot be defined as not
x > y. Since the introduction of NaNs causes floating-point numbers to become
partially ordered, a compare  function that returns one of <, =, >, or unordered
can make it easier for the programmer to deal with comparisons.

Although the IEEE standard defines the basic floating-point operations to
return a NaN if any operand is a NaN, this might not always be the best
definition for compound operations. For example when computing the
appropriate scale factor to use in plotting a graph, the maximum of a set of
values must be computed. In this case it makes sense for the max operation to
simply ignore NaNs.

Finally, rounding can be a problem. The IEEE standard defines rounding very
precisely, and it depends on the current value of the rounding modes. This
sometimes conflicts with the definition of implicit rounding in type
conversions or the explicit round  function in languages. This means that
programs which wish to use IEEE rounding can’t use the natural language
primitives, and conversely the language primitives will be inefficient to
implement on the ever increasing number of IEEE machines.

Optimizers

Compiler texts tend to ignore the subject of floating-point. For example Aho et
al. [1986] mentions replacing x/2.0  with x*0.5 , leading the reader to assume
that x/10.0  should be replaced by 0.1*x . However, these two expressions do

1. Unless the rounding mode is round toward -∞, in which case x - x = -0.
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not have the same semantics on a binary machine, because 0.1 cannot be
represented exactly in binary. This textbook also suggests replacing x*y-x*z
by x*(y-z) , even though we have seen that these two expressions can have
quite different values when y ≈ z. Although it does qualify the statement that
any algebraic identity can be used when optimizing code by noting that
optimizers should not violate the language definition, it leaves the impression
that floating-point semantics are not very important. Whether or not the
language standard specifies that parenthesis must be honored, (x+y)+z  can
have a totally different answer than x+(y+z) , as discussed above. There is a
problem closely related to preserving parentheses that is illustrated by the
following code:

This is designed to give an estimate for machine epsilon. If an optimizing
compiler notices that eps + 1 > 1 ⇔ eps > 0, the program will be changed
completely. Instead of computing the smallest number x such that 1 ⊕ x is still

greater than x (x ≈ e ≈ ), it will compute the largest number x for which x/2

is rounded to 0 (x ≈ ). Avoiding this kind of “optimization” is so
important that it is worth presenting one more very useful algorithm that is
totally ruined by it.

Many problems, such as numerical integration and the numerical solution of
differential equations involve computing sums with many terms. Because each
addition can potentially introduce an error as large as .5 ulp , a sum involving
thousands of terms can have quite a bit of rounding error. A simple way to
correct for this is to store the partial summand in a double precision variable
and to perform each addition using double precision. If the calculation is being
done in single precision, performing the sum in double precision is easy on
most computer systems. However, if the calculation is already being done in
double precision, doubling the precision is not so simple. One method that is
sometimes advocated is to sort the numbers and add them from smallest to
largest. However, there is a much more efficient method which dramatically
improves the accuracy of sums, namely

eps = 1;
do eps = 0.5*eps; while (eps + 1 > 1);

β p–

βemin



What Every Computer Scientist Should Know About Floating-Point Arithmetic 221

D

Theorem 8 (Kahan Summation Formula)

Suppose that  is computed using the following algorithm

Then the computed sum S is equal to where
.

Using the naive formula , the computed sum is equal to
where |δj| < (n - j)e. Comparing this with the error in the Kahan summation
formula shows a dramatic improvement. Each summand is perturbed by only
2e, instead of perturbations as large as ne in the simple formula. Details are in,
“Errors In Summation” on page 238.

An optimizer that believed floating-point arithmetic obeyed the laws of algebra
would conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, rendering the algorithm
completely useless. These examples can be summarized by saying that
optimizers should be extremely cautious when applying algebraic identities
that hold for the mathematical real numbers to expressions involving floating-
point variables.

Another way that optimizers can change the semantics of floating-point code
involves constants. In the expression 1.0E-40*x , there is an implicit decimal
to binary conversion operation that converts the decimal number to a binary
constant. Because this constant cannot be represented exactly in binary, the
inexact exception should be raised. In addition, the underflow flag should to be
set if the expression is evaluated in single precision. Since the constant is
inexact, its exact conversion to binary depends on the current value of the IEEE
rounding modes. Thus an optimizer that converts 1.0E-40  to binary at
compile time would be changing the semantics of the program. However,
constants like 27.5 which are exactly representable in the smallest available
precision can be safely converted at compile time, since they are always exact,

S = X[1];
C = 0;
for j = 2 to N {
    Y = X[j] - C;
    T = S + Y;
    C = (T - S) - Y;
    S = T;
}

Σj 1=
N xj

Σxj 1 δj+( ) O Nε2( ) Σ xj ,+
δj 2ε≤( )

Σxj Σxj 1 δj+( )
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cannot raise any exception, and are unaffected by the rounding modes.
Constants that are intended to be converted at compile time should be done
with a constant declaration, such as const pi = 3.14159265 .

Common subexpression elimination is another example of an optimization that
can change floating-point semantics, as illustrated by the following code

Although A*B  may appear to be a common subexpression, it is not because the
rounding mode is different at the two evaluation sites. Three final examples:
x = x cannot be replaced by the boolean constant true , because it fails when x
is a NaN; -x = 0 - x fails for x = +0; and x < y is not the opposite of x ≥ y, because
NaNs are neither greater than nor less than ordinary floating-point numbers.

Despite these examples, there are useful optimizations that can be done on
floating-point code. First of all, there are algebraic identities that are valid for
floating-point numbers. Some examples in IEEE arithmetic are x + y = y + x,
2 × x = x + x, 1 × x = x, and 0.5 × x = x/2. However, even these simple identities
can fail on a few machines such as CDC and Cray supercomputers. Instruction
scheduling and in-line procedure substitution are two other potentially useful
optimizations.1

As a final example, consider the expression dx = x*y , where x  and y  are single
precision variables, and dx  is double precision. On machines that have an
instruction that multiplies two single precision numbers to produce a double
precision number, dx = x*y  can get mapped to that instruction, rather than
compiled to a series of instructions that convert the operands to double and
then perform a double to double precision multiply.

Some compiler writers view restrictions which prohibit converting (x + y) + z
to x + (y + z) as irrelevant, of interest only to programmers who use unportable
tricks. Perhaps they have in mind that floating-point numbers model real
numbers and should obey the same laws that real numbers do. The problem
with real number semantics is that they are extremely expensive to implement.
Every time two n bit numbers are multiplied, the product will have 2n bits.

1. The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in that they use the
inexpensive jump to subroutine call rather than the slower CALLS and CALLG instructions.

C = A*B;
RndMode = Up
D = A*B;
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Every time two n bit numbers with widely spaced exponents are added, the
number of bits in the sum is n + the space between the exponents.  The sum
could have up to (emax - emin) + n bits, or roughly 2⋅emax + n bits.  An algorithm
that involves thousands of operations (such as solving a linear system) will
soon be operating on numbers with many significant bits, and be hopelessly
slow. The implementation of library functions such as sin and cos is even more
difficult, because the value of these transcendental functions aren’t rational
numbers. Exact integer arithmetic is often provided by lisp systems and is
handy for some problems. However, exact floating-point arithmetic is rarely
useful.

The fact is that there are useful algorithms (like the Kahan summation formula)
that exploit the fact that (x + y) + z ≠ x + (y + z), and work whenever the bound

a ⊕ b = (a + b)(1 + δ)

holds (as well as similar bounds for -, × and /). Since these bounds hold for
almost all commercial hardware, it would be foolish for numerical
programmers to ignore such algorithms, and it would be irresponsible for
compiler writers to destroy these algorithms by pretending that floating-point
variables have real number semantics.

Exception Handling

The topics discussed up to now have primarily concerned systems implications
of accuracy and precision. Trap handlers also raise some interesting systems
issues. The IEEE standard strongly recommends that users be able to specify a
trap handler for each of the five classes of exceptions, and “Trap Handlers” on
page 207, gave some applications of user defined trap handlers. In the case of
invalid operation and division by zero exceptions, the handler should be
provided with the operands, otherwise, with the exactly rounded result.
Depending on the programming language being used, the trap handler might
be able to access other variables in the program as well. For all exceptions, the
trap handler must be able to identify what operation was being performed and
the precision of its destination.

The IEEE standard assumes that operations are conceptually serial and that
when an interrupt occurs, it is possible to identify the operation and its
operands. On machines which have pipelining or multiple arithmetic units,
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when an exception occurs, it may not be enough to simply have the trap
handler examine the program counter. Hardware support for identifying
exactly which operation trapped may be necessary.

Another problem is illustrated by the following program fragment.

Suppose the second multiply raises an exception, and the trap handler wants
to use the value of a. On hardware that can do an add and multiply in parallel,
an optimizer would probably move the addition operation ahead of the second
multiply, so that the add can proceed in parallel with the first multiply. Thus
when the second multiply traps, a = b + c  has already been executed,
potentially changing the result of a. It would not be reasonable for a compiler
to avoid this kind of optimization, because every floating-point operation can
potentially trap, and thus virtually all instruction scheduling optimizations
would be eliminated. This problem can be avoided by prohibiting trap
handlers from accessing any variables of the program directly. Instead, the
handler can be given the operands or result as an argument.

But there are still problems. In the fragment

the two instructions might well be executed in parallel. If the multiply traps, its
argument z  could already have been overwritten by the addition, especially
since addition is usually faster than multiply. Computer systems that support
the IEEE standard must provide some way to save the value of z , either in
hardware or by having the compiler avoid such a situation in the first place.

W. Kahan has proposed using presubstitution instead of trap handlers to avoid
these problems. In this method, the user specifies an exception and the value
he wants to be used as the result when the exception occurs. As an example,
suppose that in code for computing (sin x)/x, the user decides that x = 0 is so
rare that it would improve performance to avoid a test for x = 0, and instead
handle this case when a 0/0 trap occurs. Using IEEE trap handlers, the user
would write a handler that returns a value of 1 and install it before computing

x = y*z;
z = x*w;
a = b + c;
d = a/x;

x = y*z;
z = a + b;
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sin x/x. Using presubstitution, the user would specify that when an invalid
operation occurs, the value 1 should be used. Kahan calls this presubstitution,
because the value to be used must be specified before the exception occurs.
When using trap handlers, the value to be returned can be computed when the
trap occurs.

The advantage of presubstitution is that it has a straightforward hardware
implementation.1 As soon as the type of exception has been determined, it can
be used to index a table which contains the desired result of the operation.
Although presubstitution has some attractive attributes, the widespread
acceptance of the IEEE standard makes it unlikely to be widely implemented
by hardware manufacturers.

The Details

A number of claims have been made in this paper concerning properties of
floating-point arithmetic. We now proceed to show that floating-point is not
black magic, but rather is a straightforward subject whose claims can be
verified mathematically. This section is divided into three parts. The first part
presents an introduction to error analysis, and provides the details for Section ,
“Rounding Error,” on page 173. The second part explores binary to decimal
conversion, filling in some gaps from Section , “The IEEE Standard,” on
page 189. The third part discusses the Kahan summation formula, which was
used as an example in Section , “Systems Aspects,” on page 211.

Rounding Error

In the discussion of rounding error, it was stated that a single guard digit is
enough to guarantee that addition and subtraction will always be accurate
(Theorem 2). We now proceed to verify this fact. Theorem 2 has two parts, one
for subtraction and one for addition. The part for subtraction is

1. The difficulty with presubstitution is that it requires either direct hardware implementation, or continuable
floating-point traps if implemented in software. -- Ed.
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Theorem 9

If x and y are positive floating-point numbers in a format with parameters β and p,
and if subtraction is done with p + 1 digits (i.e. one guard digit), then the relative

 rounding error in the result is less than e ≤ 2e.

Proof

Interchange x and y if necessary so that x > y. It is also harmless to scale x
and y so that x is represented by x0.x1 … xp - 1 × β0. If y is represented as y0.y1

… yp-1, then the difference is exact. If y is represented as 0.y1 … yp, then the
guard digit ensures that the computed difference will be the exact difference
rounded to a floating-point number, so the rounding error is at most e. In
general, let y = 0.0 … 0yk + 1 … yk + p, and  be y truncated to p + 1 digits.
Then

y -  < (β - 1)(β-p - 1 + β-p - 2 + … + β-p - k) (15)

From the definition of guard digit, the computed value of x - y is x -
rounded to be a floating-point number, that is, (x - ) + δ, where the
rounding error δ satisfies

|δ| ≤ (β/2)β-p. (16)

The exact difference is x - y, so the error is (x - y) - (x -  + δ) =  - y + δ.
There are three cases. If x - y ≥ 1 then the relative error is bounded by

≤ β-p [(β − 1)(β−1 + … + β-k) + β/2] < β-p(1 + β/2) (17)

Secondly, if x -  < 1, then δ = 0. Since the smallest that x - y can be is

  > (β - 1)(β-1 + … + β-k), where ρ = β - 1,

in this case the relative error is bounded by

β
2
--- 1+ 

  β p– 1 2
β
---+ 

 =

y

y

y
y

y y

y y– δ+
1

--------------------

y

1.0 0.
k

0…0 
  p

ρ…ρ 
 

–      
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18)

The final case is when x - y < 1 but x - ≥ 1. The only way this could
happen is if x -  = 1, in which case δ = 0. But if δ = 0, then (18) applies, so
that again the relative error is bounded by β-p < β-p(1 + β/2). ❚

When β = 2, the bound is exactly 2e, and this bound is achieved for x= 1 + 22 - p

and y = 21 - p - 21 - 2p in the limit as p → ∞. When adding numbers of the same
sign, a guard digit is not necessary to achieve good accuracy, as the following
result shows.

Theorem 10

If x ≥ 0 and y ≥ 0, then the relative error in computing x + y is at most 2ε, even if no
guard digits are used.

Proof

The algorithm for addition with k guard digits is similar to that for
subtraction. If x ≥ y, shift y right until the radix points of x and y are aligned.
Discard any digits shifted past the p + k position. Compute the sum of these
two p + k digit numbers exactly. Then round to p digits.

We will verify the theorem when no guard digits are used; the general case
is similar. There is no loss of generality in assuming that x ≥ y ≥ 0 and that x
is scaled to be of the form d.dd…d × β0. First, assume there is no carry out.
Then the digits shifted off the end of y have a value less than β-p + 1, and the
sum is at least 1, so the relative error is less than β-p+1/1 = 2e. If there is a
carry out, then the error from shifting must be added to the rounding error

of . The sum is at least β, so the relative error is less than

 ≤ 2ε. ❚

y y– δ+
β 1–( ) β 1– … β k–+ +( )

------------------------------------------------------------- β 1–( ) β p– β 1– … β k–+ +( )
β 1–( ) β 1– … β k–+ +( )

----------------------------------------------------------------------< β p–=

y
y

1
2
---β p– 2+

β p– 1+ 1
2
---β p– 2++ 

  β⁄ 1 β 2⁄+( ) β p–=



228 Numerical Computation Guide

D

It is obvious that combining these two theorems gives Theorem 2. Theorem 2
gives the relative error for performing one operation. Comparing the rounding
error of x2 - y2 and (x + y) (x - y) requires knowing the relative error of multiple
operations. The relative error of x y is δ1 = [(x y) - (x - y)] / (x - y), which
satisfies |δ1| ≤ 2e. Or to write it another way

x y = (x - y) (1 + δ1),    |δ1| ≤ 2e (19)

Similarly

x ⊕ y = (x + y) (1 + δ2),   |δ2| ≤ 2e (20)

Assuming that multiplication is performed by computing the exact product
and then rounding, the relative error is at most .5 ulp , so

u ⊗ v = uv (1 + δ3),          |δ3| ≤ e (21)

for any floating-point numbers u and v. Putting these three equations together
(letting u = x y and v = x ⊕ y) gives

(x y) ⊗ (x ⊕ y) = (x - y) (1 + δ1) (x + y) (1 + δ2) (1 + δ3) (22)

So the relative error incurred when computing (x - y) (x + y) is

(x y) ⊗ (x ⊕ y) − (x2 − y2)
  = (1 + δ1) (1 + δ2) (1 + δ3) − 1 (23)

         (x2 - y2)

This relative error is equal to δ1 + δ2 + δ3 + δ1δ2 + δ1δ3 + δ2δ3 + δ1δ2δ3, which is
bounded by 5ε + 8ε2.   In other words, the maximum relative error is about 5
rounding errors (since e is a small number, e2 is almost negligible).
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A similar analysis of (x ⊗ x)  (y ⊗ y) cannot result in a small value for the
relative error, because when two nearby values of x and y are plugged into
x2 - y2, the relative error will usually be quite large. Another way to see this is
to try and duplicate the analysis that worked on (x y) ⊗ (x ⊕ y), yielding

(x ⊗ x)  (y ⊗ y) =  [x2(1 + δ1) - y2(1 + δ2)] (1 + δ3)
= ((x2 - y2) (1 + δ1) + (δ1 - δ2)y

2) (1 + δ3)

When x and y are nearby, the error term (δ1 - δ2)y
2 can be as large as the result

x2 - y 2. These computations formally justify our claim that (x - y) (x + y) is
more accurate than x2 - y2.

We next turn to an analysis of the formula for the area of a triangle. In order to
estimate the maximum error that can occur when computing with (7), the
following fact will be needed.

Theorem 11

If subtraction is performed with a guard digit, and y/2 ≤ x ≤ 2y, then x - y is
computed exactly.

Proof

Note that if x and y have the same exponent, then certainly x y is exact.
Otherwise, from the condition of the theorem, the exponents can differ by at
most 1. Scale and interchange x and y if necessary so that 0 ≤ y ≤ x, and x is
represented as x0.x1 … xp - 1 and y as 0.y1 … yp. Then the algorithm for
computing x y will compute x - y exactly and round to a floating-point
number.  If the difference is of the form 0.d1 … dp, the difference will already
be p digits long, and no rounding is necessary. Since x ≤ 2y, x - y ≤ y, and
since y is of the form 0.d1 … dp, so is x - y. ❚

When β > 2, the hypothesis of Theorem 11 cannot be replaced by y/β ≤ x ≤ βy;
the stronger condition y/2 ≤ x ≤ 2y is still necessary. The analysis of the error in
(x - y) (x + y), immediately following the proof of Theorem 10,  used the fact
that the relative error in the basic operations of addition and subtraction is
small (namely equations (19) and (20)). This is the most common kind of error
analysis. However, analyzing formula (7) requires something more, namely
Theorem 11, as the following proof will show.



230 Numerical Computation Guide

D

Theorem 12

If subtraction uses a guard digit, and if a,b and c are the sides of a triangle
(a ≥ b ≥ c), then the relative error in computing
(a + (b + c))(c - (a - b))(c + (a - b))(a +(b - c)) is at most 16ε, provided e < .005.

Proof

Let’s examine the factors one by one. From Theorem 10,
b ⊕ c = (b + c) (1 + δ1), where δ1 is the relative error, and |δ1| ≤ 2ε. Then the
value of the first factor is (a ⊕ (b ⊕ c)) = (a + (b ⊕ c)) (1 + δ2) = (a + (b + c) (1
+ δ1))(1 + δ2), and thus

   (a + b + c) (1 - 2ε)2 ≤    [a + (b + c) (1 - 2ε)] ⋅ (1−2ε)
≤    a ⊕ (b ⊕ c)
≤    [a + (b + c) (1 + 2ε)] (1 + 2ε)
≤    (a + b + c) (1 + 2ε)2

This means that there is an η1 so that

(a ⊕ (b ⊕ c)) = (a + b + c) (1 + η1)
2, |η1| ≤ 2ε. (24)

The next term involves the potentially catastrophic subtraction of c and
a b, because a b may have rounding error.  Because a, b and c are the
sides of a triangle, a ≤ b+ c, and combining this with the ordering c ≤ b ≤ a
gives a ≤ b + c ≤ 2b ≤ 2a. So a - b satisfies the conditions of Theorem 11. This
means that a - b = a b is exact, hence c  (a - b) is a harmless subtraction
which can be estimated from Theorem 9 to be

(c  (a b)) = (c - (a - b)) (1 + η2), |η2| ≤ 2ε (25)

The third term is the sum of two exact positive quantities, so

(c ⊕ (a b)) = (c + (a - b)) (1 + η3), |η3| ≤ 2ε (26)
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Finally, the last term is

(a ⊕ (b c)) = (a + (b - c)) (1 + η4)
2, |η4| ≤ 2ε, (27)

using both Theorem 9 and Theorem 10. If multiplication is assumed to be
exactly rounded, so that x ⊗ y = xy(1 + ζ) with |ζ| ≤ ε, then combining (24),
(25), (26) and (27) gives

(a ⊕ (b ⊕ c)) (c  (a  b)) (c ⊕ (a  b)) (a ⊕ (b c))
≤(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E

where

E = (1 + η1)
2 (1 + η2) (1 + η3) (1 +η4)

2 (1 + ζ1)(1 + ζ2) (1 + ζ3)

An upper bound for Ε is (1 + 2ε)6(1 + ε)3, which expands out to
1 + 15ε + O(ε2). Some writers simply ignore the O(e2) term, but it is easy to
account for it. Writing (1 + 2ε)6(1 + ε)3 = 1 + 15ε + εR(ε), R(ε) is a polynomial
in e with positive coefficients, so it is an increasing function of ε. Since
R(.005) = .505, R(ε) < 1 for all ε < .005, and hence
E ≤ (1 + 2ε)6(1 + ε)3 < 1 + 16ε. To get a lower bound on E, note that 1 - 15ε -
εR(ε) < E, and so when ε < .005, 1 - 16ε < (1 - 2ε)6(1 - ε)3. Combining these
two bounds yields 1 - 16ε < E < 1 + 16ε. Thus the relative error is at most
16ε. ❚

Theorem 12 certainly shows that there is no catastrophic cancellation in
formula (7). So although it is not necessary to show formula (7) is numerically
stable, it is satisfying to have a bound for the entire formula, which is what
Theorem 3 of “Cancellation” on page 179 gives.

Proof of Theorem 3

Let
q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))

and
Q = (a ⊕ (b ⊕ c)) ⊗ (c  (a b)) ⊗ (c ⊕ (a b)) ⊗ (a ⊕ (b c)).
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Then, Theorem 12 shows that Q = q(1 + δ), with δ ≤ 16ε. It is easy to check
that

(28)

provided δ ≤ .04/(.52)2 ≈ .15, and since |δ| ≤ 16ε ≤ 16(.005) = .08, δ does

 satisfy the condition. Thus , with

 |δ1|≤ .52|δ|≤ 8.5ε. If square roots are computed to within .5 ulp , then the

 error when computing  is (1 + δ1)(1 + δ2), with |δ2|≤ ε. If β = 2, then
there is no further error committed when dividing by 4. Otherwise, one
more factor 1 + δ3 with |δ3| ≤ ε is necessary for the division, and using the
method in the proof of Theorem 12, the final error bound of (1 +δ1) (1 + δ2)
(1 + δ3) is dominated by 1 + δ4, with |δ4| ≤ 11ε. ❚

To make the heuristic explanation immediately following the statement of
Theorem 4 precise, the next theorem describes just how closely µ(x)
approximates a constant.

Theorem 13

If µ(x) = ln(1 + x)/x, then for 0 ≤ x ≤ , ≤ µ(x) ≤ 1 and the derivative satisfies

 |µ’(x)| ≤ .

Proof

Note that µ(x) = 1 - x/2 + x2/3 - … is an alternating series with decreasing
terms, so for x ≤ 1, µ(x) ≥ 1 - x/2 ≥ 1/2. It is even easier to see that because
the series for µ is alternating, µ(x) ≤ 1. The Taylor series of µ’(x) is also

 alternating, and if x ≤  has decreasing terms, so - ≤ µ’(x) ≤ -  + 2x/3, or

- ≤ µ’(x) ≤ 0, thus |µ’(x)| ≤ . ❚

1 0.52δ 1 δ– 1 δ+ 1 0.52δ+≤ ≤ ≤–

Q q 1 δ+( ) q 1 δ1+( )= =
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Proof of Theorem 4

Since the Taylor series for ln

is an alternating series, 0 < x - ln(1 + x) < x2/2, so the relative error incurred
when approximating ln(1 + x) by x is bounded by x/2. If 1 ⊕ x = 1, then
|x| < ε, so the relative error is bounded by ε/2.

When 1 ⊕ x ≠ 1, define  via 1 ⊕ x = 1 + . Then since 0 ≤ x < 1, (1 ⊕ x)
1 = .  If division and logarithms are computed to within ulp , then the
computed value of the expression ln(1 + x)/((1 + x) - 1) is

  ln(1 ⊕ x)                            ln(1 + )
 (1 + δ1) (1 + δ2) =  (1 + δ1) (1 + δ2) = µ( ) (1 + δ1) (1 + δ2)

(1 ⊕ x)  1

(29)

where |δ1| ≤ ε and |δ2| ≤ ε. To estimate µ( ), use the mean value theorem,
which says that

µ( ) - µ(x) = (  - x)µ′(ξ) (30)

for some ξ between x and . From the definition of , it follows that |  -
x| ≤ ε, and combining this with Theorem 13 gives |µ( ) - µ(x)| ≤ ε/2, or
|µ( )/µ(x) - 1| ≤ ε/(2|µ(x)|) ≤ ε which means that µ( ) = µ(x) (1 + δ3), with
|δ3| ≤ ε. Finally, multiplying by x introduces a final δ4, so the computed
value of x⋅ln(1 ⊕ x)/((1 ⊕ x)  1) is

It is easy to check that if ε < 0.1, then (1 + δ1) (1 + δ2) (1 + δ3) (1 + δ4) = 1 + δ,
with |δ| ≤ 5ε. ❚

ln 1 x+( ) x
x2

2
-----– x3

3
----- …–+=

x̂ x̂
x̂ 1

2
---

x̂
x̂

x̂

x̂

x̂ x̂

x̂ x̂ x̂
x̂

x̂ x̂

x ln 1 x+( )
1 x+( ) 1–

---------------------------- 1 δ1+( ) 1 δ2+( ) 1 δ3+( ) 1 δ4+( ) , δi ε≤
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An interesting example of error analysis using formulas (19), (20) and (21)

 occurs in the quadratic formula . “Cancellation” on
page 179, explained how rewriting the equation will eliminate the potential
cancellation caused by the ± operation. But there is another potential
cancellation that can occur when computing d = b2 - 4ac. This one cannot be
eliminated by a simple rearrangement of the formula. Roughly speaking, when
b2 ≈ 4ac, rounding error can contaminate up to half the digits in the roots
computed with the quadratic formula. Here is an informal proof (another
approach to estimating the error in the quadratic formula appears in Kahan
[1972]).

If b2 ≈ 4ac, rounding error can contaminate up to half the digits in the roots computed

with the quadratic formula .

Proof: Write (b ⊗ b)  (4a ⊗ c) = (b2(1 + δ1) - 4ac(1 + δ2)) (1 + δ3), where
|δi|≤ ε. 1 Using d = b2 - 4ac, this can be rewritten as (d(1 + δ1) - 4ac(δ2 - δ1)) (1 +
δ3). To get an estimate for the size of this error, ignore second order terms in δi,
in which case the absolute error is d(δ1 + δ3) - 4acδ4, where |δ4| = |δ1 - δ2| ≤ 2ε.
Since , the first term d(δ1 + δ3) can be ignored. To estimate the second
term, use the fact that ax2 + bx + c = a(x - r1) (x - r2), so ar1r2 = c. Since

b2 ≈ 4ac, then r1 ≈ r2, so the second error term is  . Thus the
computed

 value of  is . The inequality

shows that , where , so the

absolute error in a is about . Since δ4 ≈ β-p, , and
thus

the absolute error of  destroys the bottom half of the bits of the roots r1

≈ r2. In other words, since the calculation of the roots involves computing with

1. In this informal proof, assume that β = 2 so that multiplication by 4 is exact and doesn’t require a δi.

b– b2 4ac–±( ) 2a⁄

b– b2 4ac–±( ) 2a⁄

d 4ac«

4acδ4 4a2r1δ4
2≈

d d 4a2r1
2δ4+

p q p2 q2– p2 q2+ p q p q 0>≥,+≤ ≤ ≤–

d 4a2r1
2δ4+ d E+= E 4a2r1

2 δ4≤

d 2⁄ r1 δ4 δ4 β p 2⁄–≈

r1 δ4
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, and this expression does not have meaningful bits in the
position corresponding to the lower order half of ri, then the lower order bits of
ri cannot be meaningful. ❚

Finally, we turn to the proof of Theorem 6. It is based on the following fact,
which is proven in “Theorem 14 and Theorem 8” on page 243.

Theorem 14

Let 0 < k < p, and set m = βk + 1, and assume that floating-point operations are
exactly rounded. Then (m ⊗ x)  (m ⊗ x  x) is exactly equal to x rounded to p -
k significant digits. More precisely, x is rounded by taking the significand of x,
imagining a radix point just left of the k least significant digits and rounding to an
integer.

Proof of Theorem 6

By Theorem 14, xh is x rounded to p - k = p/2 places. If there is no carry
out, then certainly xh can be represented with p/2 significant digits.
 Suppose there is a carry-out. If x = x0.x1 … xp - 1 × βe, then rounding adds 1 to
xp - k - 1, and the only way there can be a carry-out is if xp - k - 1 = β - 1, but then

the low order digit of xh is 1 + xp - k - 1 = 0, and so again xh is representable in
p/2 digits.

To deal with xl, scale x to be an integer satisfying βp - 1 ≤ x ≤ βp - 1. Let

 where  is the p - k high order digits of x, and  is the k low

order digits. There are three cases to consider. If , then

rounding x to p - k places is the same as chopping and , and

. Since  has at most k digits, if p is even, then  has at most k =

p/2 = p/2 digits. Otherwise, β = 2 and  is representable with
k

- 1 ≤ p/2 significant bits. The second case is when , and

d( ) 2a( )⁄

x xh xl+= xh xl

xl β 2⁄( ) βk 1–<

xh xh=

xl xl= xl xl

x1 2k 1–<

x β 2⁄( ) βk 1–>
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then computing xh involves rounding up, so xh =  + βk, and

xl = x - xh = x - − βk =  - βk. Once again,  has at most k digits, so is

representable with p/2 digits. Finally, if  = (β/2)βk - 1, then xh =  or
+ βk depending on whether there is a round up. So xl is either (β/2)βk - 1

or (β/2)βk - 1 - βk = -βk/2, both of which are represented with 1 digit. ❚

Theorem 6 gives a way to express the product of two working precision
numbers exactly as a sum. There is a companion formula for expressing a sum
exactly. If |x| ≥ |y| then x + y = (x ⊕ y) + (x  (x ⊕ y)) ⊕ y [Dekker 1971;
Knuth 1981, Theorem C in section 4.2.2]. However, when using exactly
rounded operations, this formula is only true for β = 2, and not for β = 10 as
the example x = .99998, y = .99997 shows.

Binary to Decimal Conversion

Since single precision has p = 24, and 224 < 108, you might expect that
converting a binary number to 8 decimal digits would be sufficient to recover
the original binary number. However, this is not the case.

Theorem 15

When a binary IEEE single precision number is converted to the closest eight digit
decimal number, it is not always possible to uniquely recover the binary number
from the decimal one. However, if nine decimal digits are used, then converting the
decimal number to the closest binary number will recover the original floating-point
number.

Proof

Binary single precision numbers lying in the half open interval [103, 210) =
[1000, 1024) have 10 bits to the left of the binary point, and 14 bits to the
right of the binary point. Thus there are (210 - 103)214 = 393,216 different
binary numbers in that interval. If decimal numbers are represented with 8
digits, then there are (210 - 103)104 = 240,000 decimal numbers in the same
interval. There is no way that 240,000 decimal numbers could represent
393,216 different binary numbers. So 8 decimal digits are not enough to
uniquely represent each single precision binary number.

xh

xh xl xl

xl xh
xh
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To show that 9 digits are sufficient, it is enough to show that the spacing
between binary numbers is always greater than the spacing between
decimal numbers. This will ensure that for each decimal number N, the

 interval [N - ulp , N + ulp ] contains at most one binary number. Thus

each binary number rounds to a unique decimal number which in turn
rounds to a unique binary number.

To show that the spacing between binary numbers is always greater than the
spacing between decimal numbers, consider an interval [10n, 10n + 1]. On this
interval, the spacing between consecutive decimal numbers is 10(n + 1) - 9. On
 [10n, 2m], where m is the smallest integer so that 10n < 2m, the spacing of
binary numbers is 2m - 24, and the spacing gets larger further on in the
interval. Thus it is enough to check that 10(n + 1) - 9 < 2m - 24. But in fact, since
10n < 2m, then 10(n + 1) - 9 = 10n10-8 < 2m10-8 < 2m2-24. ❚

The same argument applied to double precision shows that 17 decimal digits
are required to recover a double precision number.

Binary-decimal conversion also provides another example of the use of flags.
Recall from “Precision” on page 191, that to recover a binary number from its
decimal expansion, the decimal to binary conversion must be computed
exactly. That conversion is performed by multiplying the quantities N and
10|P| (which are both exact if p < 13) in single-extended precision and then
rounding this to single precision (or dividing if p < 0; both cases are similar).
Of course the computation of N ⋅ 10|P| cannot be exact; it is the combined
operation round(N ⋅ 10|P|) that must be exact, where the rounding is from
single-extended to single precision. To see why it might fail to be exact, take
the simple case of β = 10, p = 2 for single, and p = 3 for single-extended. If the
product is to be 12.51, then this would be rounded to 12.5 as part of the single-
extended multiply operation. Rounding to single precision would give 12. But
that answer is not correct, because rounding the product to single precision
should give 13. The error is due to double rounding.

By using the IEEE flags, double rounding can be avoided as follows. Save the
current value of the inexact flag, and then reset it. Set the rounding mode to
round-to-zero. Then perform the multiplication N ⋅ 10|P|. Store the new value
of the inexact flag in ixflag , and restore the rounding mode and inexact flag.
If ixflag  is 0, then N ⋅ 10|P| is exact, so round(N ⋅ 10|P|) will be correct down
to the last bit. If ixflag  is 1, then some digits were truncated, since round-to-
zero always truncates. The significand of the product will look like

1
2
--- 1

2
---
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1.b1…b22b23…b31. A double rounding error may occur if b23 …b31 = 10…0. A
simple way to account for both cases is to perform a logical OR of ixflag  with
b31. Then round(N ⋅ 10|P|) will be computed correctly in all cases.

Errors In Summation

“Optimizers” on page 219, mentioned the problem of accurately computing
very long sums. The simplest approach to improving accuracy is to double the
precision. To get a rough estimate of how much doubling the precision
improves the accuracy of a sum, let s1 = x1, s2 = s1 ⊕ x2…, si = si - 1 ⊕ xi. Then si

= (1 + δi) (si - 1 + xi), where δi ≤ ε, and ignoring second order terms in δi gives

(31)

The first equality of (31) shows that the computed value of  is the same as
if an exact summation was performed on perturbed values of xj. The first term
x1 is perturbed by nε, the last term xn by only ε. The second equality in (31)
shows that error term is bounded by . Doubling the precision has the
effect of squaring ε. If the sum is being done in an IEEE double precision
format, 1/ε ≈ 1016, so that  for any reasonable value of n. Thus, doubling

 the precision takes the maximum perturbation of nε and changes it to .
Thus the 2ε error bound for the Kahan summation formula (Theorem 8) is not
as good as using double precision, even though it is much better than single
precision.

For an intuitive explanation of why the Kahan summation formula works,
consider the following diagram of the procedure.
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Each time a summand is added, there is a correction factor C which will be
applied on the next loop. So first subtract the correction C computed in the
previous loop from Xj, giving the corrected summand Y. Then add this
summand to the running sum S. The low order bits of Y (namely Yl) are lost in
the sum. Next compute the high order bits of Y by computing T - S. When Y is
subtracted from this, the low order bits of Y will be recovered. These are the
bits that were lost in the first sum in the diagram. They become the correction
factor for the next loop. A formal proof of Theorem 8, taken from Knuth [1981]
page 572, appears in Section , “Theorem 14 and Theorem 8.”

Summary

It is not uncommon for computer system designers to neglect the parts of a
system related to floating-point. This is probably due to the fact that floating-
point is given very little (if any) attention in the computer science curriculum.
This in turn has caused the apparently widespread belief that floating-point is
not a quantifiable subject, and so there is little point in fussing over the details
of hardware and software that deal with it.
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This paper has demonstrated that it is possible to reason rigorously about
floating-point. For example, floating-point algorithms involving cancellation
can be proven to have small relative errors if the underlying hardware has a
guard digit, and there is an efficient algorithm for binary-decimal conversion
that can be proven to be invertible, provided that extended precision is
supported. The task of constructing reliable floating-point software is made
much easier when the underlying computer system is supportive of floating-
point. In addition to the two examples just mentioned (guard digits and
extended precision), Section , “Systems Aspects,” on page 211 of this paper has
examples ranging from instruction set design to compiler optimization
illustrating how to better support floating-point.

The increasing acceptance of the IEEE floating-point standard means that codes
that utilize features of the standard are becoming ever more portable. Section ,
“The IEEE Standard,” on page 189, gave numerous examples illustrating how
the features of the IEEE standard can be used in writing practical floating-point
codes.
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Theorem 14 and Theorem 8

This section contains two of the more technical proofs that were omitted from
the text.

Theorem 14

Let 0 < k < p, and set m = βk + 1, and assume that floating-point operations are
exactly rounded. Then (m ⊗ x) (m ⊗ x  x) is exactly equal to x rounded to
p - k significant digits. More precisely, x is rounded by taking the significand of x,
imagining a radix point just left of the k least significant digits, and rounding to an
integer.

Proof

The proof breaks up into two cases, depending on whether or not the
computation of mx = βkx + x has a carry-out or not.

Assume there is no carry out. It is harmless to scale x so that it is an integer.
Then the computation of mx = x + βkx looks like this:

  aa...aabb...bb
+aa...aabb...bb

  zz  ...  zzbb...bb

where x has been partitioned into two parts. The low order k digits are
marked b and the high order p - k digits are marked a. To compute m ⊗ x
from mx involves rounding off the low order k digits (the ones marked with
b) so

m ⊗ x = mx - x mod(βk) + rβk (32)
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The value of r is 1 if .bb...b  is greater than  and 0 otherwise. More
precisely

r = 1 if a.bb...b  rounds to a + 1, r = 0 otherwise. (33)

Next compute m ⊗ x - x = mx - x mod(βk) + rβk - x = βk(x + r) - x mod(βk). The
picture below shows the computation of m ⊗ x - x rounded, that is, (m ⊗ x)

x. The top line is βk(x + r), where B is the digit that results from adding r
to the lowest order digit b.

aa...aabb...bB00...00
-bb...bb

zz   ... zzZ00...00

If .bb...b  <  then r = 0, subtracting causes a borrow from the digit

 marked B, but the difference is rounded up, and so the net effect is that the

rounded difference equals the top line, which is βkx. If .bb...b  >  then

r = 1, and 1 is subtracted from B because of the borrow, so again the result is

βkx. Finally consider the case .bb...b  = . If r = 0 then B is even, Z is odd,

and the difference is rounded up, giving βkx. Similarly when r = 1, B is odd,
Z is even, the difference is rounded down, so again the difference is βkx. To
summarize

(m ⊗ x) x = βkx (34)

Combining equations (32) and (34) gives (m ⊗ x) - (m ⊗ x x) = x - x
mod(βk) + ρ⋅βk. The result of performing this computation is

r00...00
     + aa...aabb...bb

1
2
---

1
2
---

1
2
---

1
2
---
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- bb...bb

aa...aA00...00

The rule for computing r, equation (33), is the same as the rule for rounding
a... ab...b  to p - k places. Thus computing mx - (mx - x) in floating-point
arithmetic precision is exactly equal to rounding x to p - k places, in the case
when x + βkx does not carry out.

When x + βkx does carry out, then mx = βkx + x looks like this:

aa...aabb...bb
           + aa...aabb...bb

zz...zZbb...bb

Thus, m ⊗ x = mx - x mod(βk) + wβk, where w = -Z if Z < β/2, but the exact
value of w is unimportant. Next, m ⊗ x - x = βkx - x mod(βk) + wβk. In a
picture

aa...aabb...bb00...00
-  bb...bb
+ w

  zz   ...   zZbb  ...  bb1

Rounding gives (m ⊗ x) x = βkx + wβk - rβk, where r = 1 if .bb...b  >  or

 if .bb...b  =  and b0 = 1.2 Finally, (m ⊗ x) - (m ⊗ x  x)  = mx - x mod(βk)

+ wβk - (βkx + wβk - rβk) = x - x mod(βk) + rβk. And once again, r = 1 exactly
when rounding a...ab...b  to p - k places involves rounding up. Thus
Theorem 14 is proven in all cases. ❚

1. This is the sum if adding w does not  generate carry out.  Additional argument is needed for the special case
where adding w does generate carry out.  -- Ed.

2. Rounding gives βkx + wβk - rβk only if (βkx + wβk) keeps the form of βkx.   -- Ed.

1
2
---

1
2
---
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Theorem 8 (Kahan Summation Formula)

Suppose that  is computed using the following algorithm

Then the computed sum S is equal to S = Σ xj (1 + δj) + O(Nε2) Σ |xj|, where |δj|
≤ 2ε.

Proof

First recall how the error estimate for the simple formula Σ xi went.
Introduce s1 = x1, si = (1 + δi) (si - 1 + xi). Then the computed sum is sn, which
is a sum of terms, each of which is an xi multiplied by an expression
involving δj’s. The exact coefficient of x1 is (1 + δ2)(1 + δ3) … (1 + δn), and so
by renumbering, the coefficient of x2 must be (1 + δ3)(1 + δ4) … (1 + δn), and
so on. The proof of Theorem 8 runs along exactly the same lines, only the
coefficient of x1 is more complicated. In detail s0 = c0 = 0 and

yk = xk  ck - 1 = (xk - ck - 1) (1 + ηk)

sk = sk - 1 ⊕Å yk = (sk-1 + yk) (1 + σk)

ck = (sk  sk - 1)  yk = [(sk - sk - 1) (1 + γk) - yk] (1 + δk)

S = X [1];

C = 0;

for j = 2 to N {

Y = X [j] - C;

   T = S + Y;

   C = (T - S) - Y;

   S = T;

}

Σj 1=
N xj
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where all the Greek letters are bounded by ε. Although the coefficient of x1

in sk is the ultimate expression of interest, in turns out to be easier to
compute the coefficient of x1 in sk - ck and ck. When k = 1,

c1 = (s1(1 + γ 1) - y1) (1 + δ1)

= y1((1 + s1) (1 + γ1) - 1) (1 + δ1)

= x1(s1 +γ1 + s1γ1) (1 + δ1) (1 + h1)

s1 - c1 = x1[(1 + s1) - (s1 + γ1 + s1γ1) (1 + δ1)](1 + h1)

= x1[1 - γ1 - s1d1 - s1γ1 - d1γ1 - s1γ1δ1](1 + h1)

Calling the coefficients of x1 in these expressions Ck and Sk respectively, then

C1 = 2ε + O(ε2)

S1 = + η1 - γ1 + 4ε2 + O(ε3)

To get the general formula for Sk and Ck, expand the definitions of sk and ck,
ignoring all terms involving xi with i > 1 to get

sk = [sk - 1 + yk)(1 + σk)

= [sk - 1 + (xk - ck - 1) (1 + ηk)](1 + σk)

= [(sk - 1 - ck - 1) - ηkck - 1](1+σk)

ck = {sk - sk - 1}(1 + γk) - yk](1 + δk)

= [{((sk - 1 - ck - 1) - ηkck - 1)(1 + σk) - sk - 1}(1 + γk) + ck - 1(1 + ηk)](1 + δk)

= [{(sk - 1 - ck - 1)σk - ηkck-1(1 + σk) - ck - 1}(1 + γk) + ck - 1(1 + ηk)](1 + δk)

= [(sk - 1 - ck - 1)σk(1 + γk) - ck - 1(γk + ηk(σk + γk + σkγk))](1 + δk),

sk - ck = ((sk - 1 - ck - 1) - ηkck - 1) (1 + σk)

- [(sk - 1 - ck - 1)σk(1 + γk) - ck - 1(γk + ηk(σk + γk + σkγk)](1 + δk)
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= (sk- 1 - ck - 1)((1 + σk) - σk(1 + γk)(1 + δk))

+ ck - 1(-ηk(1 + σk) + (γk + ηk(σk + γk + σkγk)) (1 + δk))

= (s- 1 - ck - 1) (1 - σk(γk + δk + γkδk))

+ ck - 1 - [ηk + γk + ηk(γk + σkγk) + (γk + ηk(σk + γk + σkγk))δk]

Since Sk and Ck are only being computed up to order ε2, these formulas can
be simplified to

Ck = (σk + O(ε2))Sk - 1 + (-γk + O(ε2))Ck - 1

Sk = ((1 + 2ε2 + O(ε3))Sk - 1 + (2ε + Ο(ε2))Ck - 1

Using these formulas gives

C2  = σ2 + O(ε2)

S2 = 1 + η1 - γ1 + 10ε2 + O(ε3)

and in general it is easy to check by induction that

Ck = σk + O(ε2)

Sk = 1 + η1 - γ1 + (4k+2)ε2 + O(ε3)

Finally, what is wanted is the coefficient of x1 in sk. To get this value, let xn + 1 =
0, let all the Greek letters with subscripts of n + 1 equal 0, and compute sn + 1.
Then sn + 1 = sn - cn, and the coefficient of x1 in sn is less than the coefficient in
sn + 1, which is Sn = 1 + η1 - γ1 + (4n + 2)ε2 = (1 + 2ε + Ο(nε2)). ❚

Differences Among IEEE 754 Implementations

Note – This section is not part of the published paper.  It has been added to
clarify certain points and correct possible misconceptions about the IEEE
standard that the reader might infer from the paper.  This material was not
written by David Goldberg, but it appears here with his permission.
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The preceding paper has shown that floating-point arithmetic must be
implemented carefully, since programmers may depend on its properties for
the correctness and accuracy of their programs.  In particular, the IEEE
standard requires a careful implementation, and it is possible to write useful
programs that work correctly and deliver accurate results only on systems that
conform to the standard.  The reader might be tempted to conclude that such
programs should be portable to all IEEE systems.  Indeed, portable software
would be easier to write if the remark on page 195, “When a program is moved
between two machines and both support IEEE arithmetic, then if any
intermediate result differs, it must be because of software bugs, not from
differences in arithmetic,” were true.

Unfortunately, the IEEE standard does not guarantee that the same program
will deliver identical results on all conforming systems.  Most programs will
actually produce different results on different systems for a variety of reasons.
For one, most programs involve the conversion of numbers between decimal
and binary formats, and the IEEE standard doesn’t completely specify the
accuracy with which such conversions must be performed.  For another, many
programs use elementary functions supplied by a system library, and the
standard doesn’t specify these functions at all.  Of course, most programmers
know that these features lie beyond the scope of the IEEE standard.

Many programmers may not realize that even a program that uses only the
numeric formats and operations prescribed by the IEEE standard can compute
different results on different systems.  In fact, the authors of the standard
intended to allow different implementations to obtain different results.  Their
intent is evident in the definition of the term destination in the IEEE 754
standard: “A destination may be either explicitly designated by the user or
implicitly supplied by the system (for example, intermediate results in
subexpressions or arguments for procedures).  Some languages place the
results of intermediate calculations in destinations beyond the user’s control.
Nonetheless, this standard defines the result of an operation in terms of that
destination’s format and the operands’ values.”  (IEEE 754-1985, p. 7)  In other
words, the IEEE standard requires that each result be rounded correctly to the
precision of the destination into which it will be placed, but the standard does
not require that the precision of that destination be determined by a user’s
program.  Thus, different systems may deliver their results to destinations with
different precisions, causing the same program to produce different results
(sometimes dramatically so), even though those systems all conform to the
standard.
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Several of the examples in the preceding paper depend on some knowledge of
the way floating-point arithmetic is rounded.  In order to rely on examples
such as these, a programmer must be able to predict how a program will be
interpreted, and in particular, on an IEEE system, what the precision of the
destination of each arithmetic operation may be.  Alas, the loophole in the
IEEE standard’s definition of destination undermines the programmer’s ability
to know how a program will be interpreted.  Consequently, several of the
examples given above, when implemented as apparently portable programs in
a high-level language, may not work correctly on IEEE systems that normally
deliver results to destinations with a different precision than the programmer
expects.  Other examples may work, but proving that they work may lie
beyond the average programmer’s ability.

In this section, we classify existing implementations of IEEE 754 arithmetic
based on the precisions of the destination formats they normally use.  We then
review some examples from the paper to show that delivering results in a
wider precision than a program expects can cause it to compute wrong results
even though it is provably correct when the expected precision is used.  We
also revisit one of the proofs in the paper to illustrate the intellectual effort
required to cope with unexpected precision even when it doesn’t invalidate
our programs.  These examples show that despite all that the IEEE standard
prescribes, the differences it allows among different implementations can
prevent us from writing portable, efficient numerical software whose behavior
we can accurately predict.  To develop such software, then, we must first create
programming languages and environments that limit the variability the IEEE
standard permits and allow programmers to express the floating-point
semantics upon which their programs depend.

Current IEEE 754 Implementations

Current implementations of IEEE 754 arithmetic can be divided into two
groups distinguished by the degree to which they support different floating-
point formats in hardware. Extended-based systems, exemplified by the Intel
x86 family of processors, provide full support for an extended double precision
format but only partial support for single and double precision: they provide
instructions to load or store data in single and double precision, converting it
on-the-fly to or from the extended double format, and they provide special
modes (not the default) in which the results of arithmetic operations are
rounded to single or double precision even though they are kept in registers in
extended double format.  (Motorola 68000 series processors round results to
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both the precision and range of the single or double formats in these modes.
Intel x86 and compatible processors round results to the precision of the single
or double formats but retain the same range as the extended double format.)
Single/double systems, including most RISC processors, provide full support for
single and double precision formats but no support for an IEEE-compliant
extended double precision format.  (The IBM POWER architecture provides
only partial support for single precision, but for the purpose of this section, we
classify it as a single/double system.)

To see how a computation might behave differently on an extended-based
system than on a single/double system, consider a C version of the example
from page 211:

Here the constants 3.0 and 7.0 are interpreted as double precision floating-
point numbers, and the expression 3.0/7.0 inherits the double  data type.  On
a single/double system, the expression will be evaluated in double precision
since that is the most efficient format to use.  Thus, q will be assigned the value
3.0/7.0 rounded correctly to double precision.  In the next line, the expression
3.0/7.0 will again be evaluated in double precision, and of course the result
will be equal to the value just assigned to q, so the program will print “Equal”
as expected.

On an extended-based system, even though the expression 3.0/7.0 has type
double , the quotient will be computed in a register in extended double
format, and thus in the default mode, it will be rounded to extended double
precision.  When the resulting value is assigned to the variable q, however, it
may then be stored in memory, and since q is declared double , the value will
be rounded to double precision.  In the next line, the expression 3.0/7.0 may
again be evaluated in extended precision yielding a result that differs from the
double precision value stored in q, causing the program to print “Not equal”.
Of course, other outcomes are possible, too: the compiler could decide to store
and thus round the value of the expression 3.0/7.0 in the second line before

int main() {
    double  q;

    q = 3.0/7.0;
    if (q == 3.0/7.0) printf("Equal\n");
    else printf("Not Equal\n");
    return 0;
}
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comparing it with q, or it could keep q in a register in extended precision
without storing it.  An optimizing compiler might evaluate the expression
3.0/7.0 at compile time, perhaps in double precision or perhaps in extended
double precision.  (With one x86 compiler, the program prints “Equal” when
compiled with optimization and “Not Equal” when compiled for debugging.)
Finally, some compilers for extended-based systems automatically change the
rounding precision mode to cause operations producing results in registers to
round those results to single or double precision, albeit possibly with a wider
range.  Thus, on these systems, we can’t predict the behavior of the program
simply by reading its source code and applying a basic understanding of IEEE
754 arithmetic.  Neither can we accuse the hardware or the compiler of failing
to provide an IEEE 754 compliant environment; the hardware has delivered a
correctly rounded result to each destination, as it is required to do, and the
compiler has assigned some intermediate results to destinations that are
beyond the user’s control, as it is allowed to do.

Pitfalls in Computations on Extended-Based Systems

Conventional wisdom maintains that extended-based systems must produce
results that are at least as accurate, if not more accurate than those delivered on
single/double systems, since the former always provide at least as much
precision and often more than the latter.  Trivial examples such as the C
program above as well as more subtle programs based on the examples
discussed below show that this wisdom is naive at best: some apparently
portable programs, which are indeed portable across single/double systems,
deliver incorrect results on extended-based systems precisely because the
compiler and hardware conspire to occasionally provide more precision than
the program expects.

Current programming languages make it difficult for a program to specify the
precision it expects.  As the section “Languages and Compilers” on page 214
mentions, many programming languages don’t specify that each occurrence of
an expression like 10.0*x  in the same context should evaluate to the same
value.  Some languages, such as Ada, were influenced in this respect by
variations among different arithmetics prior to the IEEE standard.  More
recently, languages like ANSI C have been influenced by standard-conforming
extended-based systems.  In fact, the ANSI C standard explicitly allows a
compiler to evaluate a floating-point expression to a precision wider than that
normally associated with its type.  As a result, the value of the expression
10.0*x  may vary in ways that depend on a variety of factors: whether the
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expression is immediately assigned to a variable or appears as a subexpression
in a larger expression; whether the expression participates in a comparison;
whether the expression is passed as an argument to a function, and if so,
whether the argument is passed by value or by reference; the current precision
mode; the level of optimization at which the program was compiled; the
precision mode and expression evaluation method used by the compiler when
the program was compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression
evaluation.  Extended-based systems run most efficiently when expressions are
evaluated in extended precision registers whenever possible, yet values that
must be stored are stored in the narrowest precision required.  Constraining a
language to require that 10.0*x  evaluate to the same value everywhere would
impose a performance penalty on those systems.  Unfortunately, allowing
those systems to evaluate 10.0*x  differently in syntactically equivalent
contexts imposes a penalty of its own on programmers of accurate numerical
software by preventing them from relying on the syntax of their programs to
express their intended semantics.

Do real programs depend on the assumption that a given expression always
evaluates to the same value?  Recall the algorithm presented in Theorem 4 for
computing ln(1 + x), written here in Fortran:

On an extended-based system, a compiler may evaluate the expression
1.0 + x  in the third line in extended precision and compare the result with
1.0 .  When the same expression is passed to the log function in the sixth line,
however, the compiler may store its value in memory, rounding it to single
precision.  Thus, if x  is not so small that 1.0 + x  rounds to 1.0  in extended
precision but small enough that 1.0 + x  rounds to 1.0  in single precision,
then the value returned by log1p(x)  will be zero instead of x , and the relative
error will be one—rather larger than 5ε.  Similarly, suppose the rest of the
expression in the sixth line, including the reoccurrence of the subexpression

real function log1p(x)
real x
if (1.0 + x .eq. 1.0) then
   log1p = x
else
   log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)
endif
return
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1.0 + x , is evaluated in extended precision.  In that case, if x  is small but not
quite small enough that 1.0 + x  rounds to 1.0  in single precision, then the
value returned by log1p(x)  can exceed the correct value by nearly as much as
x , and again the relative error can approach one.  For a concrete example, take
x  to be 2-24 + 2-47, so x  is the smallest single precision number such that
1.0 + x  rounds up to the next larger number, 1 + 2-23.  Then log(1.0 + x)
is approximately 2-23.  Because the denominator in the expression in the sixth
line is evaluated in extended precision, it is computed exactly and delivers x ,
so log1p(x)  returns approximately 2-23, which is nearly twice as large as the
exact value.  (This actually happens with at least one compiler.  When the
preceding code is compiled by the Sun WorkShop Compilers 4.2.1 Fortran 77
compiler for x86 systems using the -O  optimization flag, the generated code
computes 1.0 + x  exactly as described.  As a result, the function delivers zero
for log1p(1.0e-10)  and 1.19209E-07  for log1p(5.97e-8) .)

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x
must be evaluated the same way each time it appears; the algorithm can fail on
extended-based systems only when 1.0 + x  is evaluated to extended double
precision in one instance and to single or double precision in another.  Of
course, since log  is a generic intrinsic function in Fortran, a compiler could
evaluate the expression 1.0 + x  in extended precision throughout, computing
its logarithm in the same precision, but evidently we cannot assume that the
compiler will do so.  (One can also imagine a similar example involving a user-
defined function.  In that case, a compiler could still keep the argument in
extended precision even though the function returns a single precision result,
but few if any existing Fortran compilers do this, either.)  We might therefore
attempt to ensure that 1.0 + x  is evaluated consistently by assigning it to a
variable.  Unfortunately, if we declare that variable real , we may still be foiled
by a compiler that substitutes a value kept in a register in extended precision
for one appearance of the variable and a value stored in memory in single
precision for another.  Instead, we would need to declare the variable with a
type that corresponds to the extended precision format.  Standard FORTRAN
77 does not provide a way to do this, and while Fortran 90 offers the
SELECTED_REAL_KIND mechanism for describing various formats, it does not
explicitly require implementations that evaluate expressions in extended
precision to allow variables to be declared with that precision.  In short, there
is no portable way to write this program in standard Fortran that is guaranteed
to prevent the expression 1.0 + x   from being evaluated in a way that
invalidates our proof.
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There are other examples that can malfunction on extended-based systems
even when each subexpression is stored and thus rounded to the same
precision.  The cause is double-rounding.  In the default precision mode, an
extended-based system will initially round each result to extended double
precision.  If that result is then stored to double precision, it is rounded again.
The combination of these two roundings can yield a value that is different than
what would have been obtained by rounding the first result correctly to double
precision.  This can happen when the result as rounded to extended double
precision is a “halfway case”, i.e., it lies exactly halfway between two double
precision numbers, so the second rounding is determined by the round-ties-to-
even rule.  If this second rounding rounds in the same direction as the first, the
net rounding error will exceed half a unit in the last place.  (Note, though, that
double-rounding only affects double precision computations.  One can prove
that the sum, difference, product, or quotient of two p-bit numbers, or the
square root of a p-bit number, rounded first to q bits and then to p bits gives the
same value as if the result were rounded just once to p bits provided q ≥ 2p + 2.
Thus, extended double precision is wide enough that single precision
computations don’t suffer double-rounding.)

Some algorithms that depend on correct rounding can fail with double-
rounding.  In fact, even some algorithms that don’t require correct rounding
and work correctly on a variety of machines that don’t conform to IEEE 754
can fail with double-rounding.  The most useful of these are the portable
algorithms for performing simulated multiple precision arithmetic mentioned
on page 186.  For example, the procedure described in Theorem 6 for splitting
a floating-point number into high and low parts doesn’t work correctly in
double-rounding arithmetic: try to split the double precision number 252 +
3 × 226 – 1 into two parts each with at most 26 bits.  When each operation is
rounded correctly to double precision, the high order part is 252 + 227 and the
low order part is 226 – 1, but when each operation is rounded first to extended
double precision and then to double precision, the procedure produces a high
order part of 252 + 228 and a low order part of –226 – 1.  The latter number
occupies 27 bits, so its square can’t be computed exactly in double precision.
Of course, it would still be possible to compute the square of this number in
extended double precision, but the resulting algorithm would no longer be
portable to single/double systems.  Also, later steps in the multiple precision
multiplication algorithm assume that all partial products have been computed
in double precision.  Handling a mixture of double and extended double
variables correctly would make the implementation significantly more
expensive.
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Likewise, portable algorithms for adding multiple precision numbers
represented as arrays of double precision numbers can fail in double-rounding
arithmetic.  These algorithms typically rely on a technique similar to Kahan’s
summation formula.  As the informal explanation of the summation formula
given on page 239 suggests, if s  and y  are floating-point variables with |s| ≥
|y| and we compute:

then in most arithmetics, e recovers exactly the roundoff error that occurred in
computing t .  This technique doesn’t work in double-rounded arithmetic,
however: if s  = 252 + 1 and y  = 1/2 – 2-54, then s + y  rounds first to 252 + 3/2
in extended double precision, and this value rounds to 252 + 2 in double
precision by the round-ties-to-even rule; thus the net rounding error in
computing t  is 1/2 + 2-54, which isn’t representable exactly in double precision
and so can’t be computed exactly by the expression shown above.  Here again,
it would be possible to recover the roundoff error by computing the sum in
extended double precision, but then a program would have to do extra work to
reduce the final outputs back to double precision, and double-rounding could
afflict this process, too.  For this reason, although portable programs for
simulating multiple precision arithmetic by these methods work correctly and
efficiently on a wide variety of machines, they don’t work as advertised on
extended-based systems.

Finally, some algorithms that at first sight appear to depend on correct
rounding may in fact work correctly with double-rounding.  In these cases, the
cost of coping with double-rounding lies not in the implementation but in the
verification that the algorithm works as advertised.  To illustrate, we prove the
following variant of Theorem 7:

Theorem 7’

If m and n are integers representable in IEEE 754 double precision with |m| < 252

and n has the special form n = 2i + 2j, then (m  n) ⊗ n = m, provided both
floating-point operations are either rounded correctly to double precision or rounded
first to extended double precision and then to double precision.

t = s + y;
e = (s - t) + y;
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Proof

Assume without loss that m > 0.  Let q = m  n.  Scaling by powers of two, we
can consider an equivalent setting in which 252 ≤ m < 253 and likewise for q, so
that both m and q are integers whose least significant bits occupy the units
place (i.e., ulp(m) = ulp(q) = 1).  Before scaling, we assumed m < 252, so after
scaling, m is an even integer.  Also, because the scaled values of m and q satisfy
m/2 < q < 2m, the corresponding value of n must have one of two forms
depending on which of m or q is larger: if q < m, then evidently 1 < n < 2, and
since n is a sum of two powers of two, n = 1 + 2-k for some k; similarly, if q > m,
then 1/2 < n < 1, so n = 1/2 + 2-(k + 1).  (As n is the sum of two powers of two,
the closest possible value of n to one is n = 1 + 2-52.  Because m/(1 + 2-52) is no
larger than the next smaller double precision number less than m, we can’t
have q = m.)

Let e denote the rounding error in computing q, so that q = m/n + e, and the
computed value q ⊗ n will be the (once or twice) rounded value of m + ne.
Consider first the case in which each floating-point operation is rounded
correctly to double precision.  In this case, |e| < 1/2.  If n has the form 1/2 +
2-(k + 1), then ne = nq – m is an integer multiple of 2-(k + 1) and |ne| < 1/4 +
2-(k + 2).  This implies that |ne| ≤ 1/4.  Recall that the difference between m and
the next larger representable number is 1 and the difference between m and the
next smaller representable number is either 1 if m > 252 or 1/2 if m = 252.  Thus,
as |ne| ≤ 1/4, m + ne will round to m.  (Even if m = 252 and ne = –1/4, the
product will round to m by the round-ties-to-even rule.)  Similarly, if n has the
form 1 + 2-k, then ne is an integer multiple of 2-k and |ne| < 1/2 + 2-(k + 1); this
implies |ne| ≤ 1/2.  We can’t have m = 252 in this case because m is strictly
greater than q, so m differs from its nearest representable neighbors by ±1.
Thus, as |ne| ≤ 1/2, again m + ne will round to m.  (Even if |ne| = 1/2, the
product will round to m by the round-ties-to-even rule because m is even.)
This completes the proof for correctly rounded arithmetic.

In double-rounding arithmetic, it may still happen that q is the correctly
rounded quotient (even though it was actually rounded twice), so |e| < 1/2 as
above.  In this case, we can appeal to the arguments of the previous paragraph
provided we consider the fact that q ⊗ n will be rounded twice.  To account for
this, note that the IEEE standard requires that an extended double format carry
at least 64 significant bits, so that the numbers m ± 1/2 and m ± 1/4 are exactly
representable in extended double precision.  Thus, if n has the form 1/2 +
2-(k + 1), so that |ne| ≤ 1/4, then rounding m + ne to extended double precision
must produce a result that differs from m by at most 1/4, and as noted above,
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this value will round to m in double precision.  Similarly, if n has the form 1 +
2-k, so that |ne| ≤ 1/2, then rounding m + ne to extended double precision
must produce a result that differs from m by at most 1/2, and this value will
round to m in double precision.  (Recall that m > 252 in this case.)

Finally, we are left to consider cases in which q is not the correctly rounded
quotient due to double-rounding.  In these cases, we have |e| < 1/2 + 2-(d + 1)

in the worst case, where d is the number of extra bits in the extended double
format.  (All existing extended-based systems support an extended double
format with exactly 64 significant bits; for this format, d = 64 – 53 = 11.)
Because double-rounding only produces an incorrectly rounded result when
the second rounding is determined by the round-ties-to-even rule, q must be an
even integer.  Thus if n has the form 1/2 + 2-(k + 1), then ne = nq – m is an
integer multiple of 2-k, and |ne| < (1/2 + 2-(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2)

+ 2-(d + 2) + 2-(k + d + 2).  If k ≤ d, this implies |ne| ≤ 1/4.  If k > d, we have |ne|
≤ 1/4 + 2-(d + 2).  In either case, the first rounding of the product will deliver a
result that differs from m by at most 1/4, and by previous arguments, the
second rounding will round to m.  Similarly, if n has the form 1 + 2-k, then ne is
an integer multiple of 2-(k – 1), and |ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).
If k ≤ d, this implies |ne| ≤ 1/2.  If k > d, we have |ne| ≤ 1/2 + 2-(d + 1).  In
either case, the first rounding of the product will deliver a result that differs
from m by at most 1/2, and again by previous arguments, the second rounding
will round to m. ❚

The preceding proof shows that the product can incur double-rounding only if
the quotient does, and even then, it rounds to the correct result.  The proof also
shows that extending our reasoning to include the possibility of double-
rounding can be challenging even for a program with only two floating-point
operations.  For a more complicated program, it may be impossible to
systematically account for the effects of double-rounding, not to mention more
general combinations of double and extended double precision computations.

Programming Language Support for Extended Precision

The preceding examples should not be taken to suggest that extended
precision per se is harmful.  Many programs can benefit from extended
precision when the programmer is able to use it selectively.  Unfortunately,
current programming languages do not provide sufficient means for a
programmer to specify when and how extended precision should be used.  To
indicate what support is needed, we consider the ways in which we might
want to manage the use of extended precision.
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In a portable program that uses double precision as its nominal working
precision, there are five ways we might want to control the use of a wider
precision:

1. Compile to produce the fastest code, using extended precision where
possible on extended-based systems.  Clearly most numerical software does
not require more of the arithmetic than that the relative error in each
operation is bounded by the “machine epsilon”.  When data in memory are
stored in double precision, the machine epsilon is usually taken to be the
largest relative roundoff error in that precision, since the input data are
(rightly or wrongly) assumed to have been rounded when they were entered
and the results will likewise be rounded when they are stored.  Thus, while
computing some of the intermediate results in extended precision may yield
a more accurate result, extended precision is not essential.  In this case, we
might prefer that the compiler use extended precision only when it will not
appreciably slow the program and use double precision otherwise.

2. Use a format wider than double if it is reasonably fast and wide enough,
otherwise resort to something else.  Some computations can be performed
more easily when extended precision is available, but they can also be
carried out in double precision with only somewhat greater effort.  Consider
computing the Euclidean norm of a vector of double precision numbers.  By
computing the squares of the elements and accumulating their sum in an
IEEE 754 extended double format with its wider exponent range, we can
trivially avoid premature underflow or overflow for vectors of practical
lengths.  On extended-based systems, this is the fastest way to compute the
norm.  On single/double systems, an extended double format would have
to be emulated in software (if one were supported at all), and such
emulation would be much slower than simply using double precision,
testing the exception flags to determine whether underflow or overflow
occurred, and if so, repeating the computation with explicit scaling.  Note
that to support this use of extended precision, a language must provide both
an indication of the widest available format that is reasonably fast, so that a
program can choose which method to use, and environmental parameters
that indicate the precision and range of each format, so that the program can
verify that the widest fast format is wide enough (e.g., that it has wider
range than double).

3. Use a format wider than double even if it has to be emulated in software.
For more complicated programs than the Euclidean norm example, the
programmer may simply wish to avoid the need to write two versions of the
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program and instead rely on extended precision even if it is slow.  Again,
the language must provide environmental parameters so that the program
can determine the range and precision of the widest available format.

4. Don’t use a wider precision; round results correctly to the precision of the
double format, albeit possibly with extended range.  For programs that are
most easily written to depend on correctly rounded double precision
arithmetic, including some of the examples mentioned above, a language
must provide a way for the programmer to indicate that extended precision
must not be used, even though intermediate results may be computed in
registers with a wider exponent range than double.  (Intermediate results
computed in this way can still incur double-rounding if they underflow
when stored to memory: if the result of an arithmetic operation is rounded
first to 53 significant bits, then rounded again to fewer significant bits when
it must be denormalized, the final result may differ from what would have
been obtained by rounding just once to a denormalized number.  Of course,
this form of double-rounding is highly unlikely to affect any practical
program adversely.)

5. Round results correctly to both the precision and range of the double
format.  This strict enforcement of double precision would be most useful
for programs that test either numerical software or the arithmetic itself near
the limits of both the range and precision of the double format.  Such careful
test programs tend to be difficult to write in a portable way; they become
even more difficult (and error prone) when they must employ dummy
subroutines and other tricks to force results to be rounded to a particular
format.  Thus, a programmer using an extended-based system to develop
robust software that must be portable to all IEEE 754 implementations
would quickly come to appreciate being able to emulate the arithmetic of
single/double systems without extraordinary effort.

No current language supports all five of these options.  In fact, few languages
have attempted to give the programmer the ability to control the use of
extended precision at all.  One notable exception is C9X, the latest revision to
the C language, which is now in the final stages of standardization.

Like the current C standard, C9X allows an implementation to evaluate
expressions in a format wider than that normally associated with their type,
but C9X recommends using one of only three expression evaluation methods.
The three recommended methods are characterized by the extent to which
expressions are “promoted” to wider formats, and the implementation is
encouraged to identify which method it uses by defining the preprocessor
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macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, each expression is
evaluated in a format that corresponds to its type; if FLT_EVAL_METHOD is 1,
float  expressions are promoted to the format that corresponds to double ;
and if FLT_EVAL_METHOD is 2, float  and double  expressions are promoted
to the format that corresponds to long double .  (An implementation is
allowed to set FLT_EVAL_METHOD to –1 to indicate that the expression
evaluation method is indeterminable.)  C9X also requires that the <math.h>
header file define the types float_t  and double_t , which are at least as
wide as float  and double , respectively, and are intended to match the types
used to evaluate float  and double  expressions.  For example, if
FLT_EVAL_METHOD is 2, both float_t  and double_t  are long double .
Finally, C9X requires that the <float.h>  header file define preprocessor
macros that specify the range and precision of the formats corresponding to
each floating-point type.

The combination of features required or recommended by C9X supports some
of the five options listed above but not all.  For example, if an implementation
maps the long double  type to an extended double format and defines
FLT_EVAL_METHOD to be 2, the programmer can reasonably assume that
extended precision is relatively fast, so programs like the Euclidean norm
example can simply use intermediate variables of type long double  (or
double_t ).  On the other hand, the same implementation must keep
anonymous expressions in extended precision even when they are stored in
memory (e.g., when the compiler must spill floating-point registers), and it
must store the results of expressions assigned to variables declared double  to
convert them to double precision even if they could have been kept in
registers.  Thus, neither the double  nor the double_t  type can be compiled to
produce the fastest code on current extended-based hardware.

Likewise, C9X provides solutions to some of the problems illustrated by the
examples in this section but not all.  A C9X version of the log1p  function is
guaranteed to work correctly if the expression 1.0 + x  is assigned to a
variable (of any type) and that variable used throughout.  A portable, efficient
C9X program for splitting a double precision number into high and low parts,
however, is more difficult: how can we split at the correct position and avoid
double-rounding if we cannot guarantee that double  expressions are rounded
correctly to double precision?  One solution is to use the double_t  type to
perform the splitting in double precision on single/double systems and in
extended precision on extended-based systems, so that in either case the
arithmetic will be correctly rounded.  Theorem 14 says that we can split at any
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bit position provided we know the precision of the underlying arithmetic, and
the FLT_EVAL_METHOD and environmental parameter macros should give us
this information.  The following fragment shows one possible implementation:

Of course, to find this solution, the programmer must know that double
expressions may be evaluated in extended precision, that the ensuing double-
rounding problem can cause the algorithm to malfunction, and that extended
precision may be used instead according to Theorem 14.  A more obvious
solution is simply to specify that each expression be rounded correctly to
double precision.  On extended-based systems, this merely requires changing
the rounding precision mode, but unfortunately, C9X does not provide a
portable way to do this.  (Early drafts of the Floating-Point C Edits, the
working document that specified the changes to be made to the C standard to
support floating-point, recommended that implementations on systems with
rounding precision modes provide fegetprec  and fesetprec  functions to
get and set the rounding precision, analogous to the fegetround  and
fesetround  functions that get and set the rounding direction.  This
recommendation was removed before the changes were made to the C9X
draft.)

Coincidentally, C9X’s approach to supporting portability among systems with
different integer arithmetic capabilities suggests a better way to support
different floating-point architectures.  Each C9X implementation supplies an

#include <math.h>
#include <float.h>

#if (FLT_EVAL_METHOD==2)
#define PWR2  LDBL_MANT_DIG - (DBL_MANT_DIG/2)
#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))
#define PWR2  DBL_MANT_DIG - (DBL_MANT_DIG/2)
#else
#error FLT_EVAL_METHOD unknown!
#endif

...
    double   x, xh, xl;
    double_t m;

    m = scalbn(1.0, PWR2) + 1.0;  // 2**PWR2 + 1
    xh = (m * x) - ((m * x) - x);
    xl = x - xh;
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<inttypes.h>  header file that defines those integer types the implementation
supports, named according to their sizes and efficiency: for example, int32_t
is an integer type exactly 32 bits wide, int_fast16_t  is the implementation’s
fastest integer type at least 16 bits wide, and intmax_t  is the widest integer
type supported.  One can imagine a similar scheme for floating-point types: for
example, float53_t  could name a floating-point type with exactly 53 bit
precision but possibly wider range, float_fast24_t  could name the
implementation’s fastest type with at least 24 bit precision, and floatmax_t
could name the widest reasonably fast type supported.  The fast types could
allow compilers on extended-based systems to generate the fastest possible
code subject only to the constraint that the values of named variables must not
appear to change as a result of register spilling.  The exact width types would
cause compilers on extended-based systems to set the rounding precision
mode to round to the specified precision, allowing wider range subject to the
same constraint.  Finally, double_t  could name a type with both the precision
and range of the IEEE 754 double format, providing strict double evaluation.
Together with environmental parameter macros named accordingly, such a
scheme would readily support all five options described above and allow
programmers to indicate easily and unambiguously the floating-point
semantics their programs require.

Must language support for extended precision be so complicated?  On
single/double systems, four of the five options listed above coincide, and there
is no need to differentiate fast and exact width types.  Extended-based systems,
however, pose difficult choices: they support neither pure double precision nor
pure extended precision computation as efficiently as a mixture of the two, and
different programs call for different mixtures.  Moreover, the choice of when to
use extended precision should not be left to compiler writers, who are often
tempted by benchmarks (and sometimes told outright by numerical analysts)
to regard floating-point arithmetic as “inherently inexact” and therefore neither
deserving nor capable of the predictability of integer arithmetic.  Instead, the
choice must be presented to programmers, and they will require languages
capable of expressing their selection.

Conclusion

The foregoing remarks are not intended to disparage extended-based systems
but to expose several fallacies, the first being that all IEEE 754 systems must
deliver identical results for the same program.  We have focused on differences
between extended-based systems and single/double systems, but there are
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further differences among systems within each of these families.  For example,
some single/double systems provide a single instruction to multiply two
numbers and add a third with just one final rounding.  This operation, called a
fused multiply-add, can cause the same program to produce different results
across different single/double systems, and, like extended precision, it can
even cause the same program to produce different results on the same system
depending on whether and when it is used.  (A fused multiply-add can also
foil the splitting process of Theorem 6, although it can be used in a non-
portable way to perform multiple precision multiplication without the need for
splitting.)  Even though the IEEE standard didn’t anticipate such an operation,
it nevertheless conforms: the intermediate product is delivered to a
“destination” beyond the user’s control that is wide enough to hold it exactly,
and the final sum is rounded correctly to fit its single or double precision
destination.

The idea that IEEE 754 prescribes precisely the result a given program must
deliver is nonetheless appealing.  Many programmers like to believe that they
can understand the behavior of a program and prove that it will work correctly
without reference to the compiler that compiles it or the computer that runs it.
In many ways, supporting this belief is a worthwhile goal for the designers of
computer systems and programming languages.  Unfortunately, when it comes
to floating-point arithmetic, the goal is virtually impossible to achieve.  The
authors of the IEEE standards knew that, and they didn’t attempt to achieve it.
As a result, despite nearly universal conformance to (most of) the IEEE 754
standard throughout the computer industry, programmers of portable software
must continue to cope with unpredictable floating-point arithmetic.

If programmers are to exploit the features of IEEE 754, they will need
programming languages that make floating-point arithmetic predictable.  C9X
improves predictability to some degree at the expense of requiring
programmers to write multiple versions of their programs, one for each
FLT_EVAL_METHOD.  Whether future languages will choose instead to allow
programmers to write a single program with syntax that unambiguously
expresses the extent to which it depends on IEEE 754 semantics remains to be
seen.  Existing extended-based systems threaten that prospect by tempting us
to assume that the compiler and the hardware can know better than the
programmer how a computation should be performed on a given system.  That
assumption is the second fallacy: the accuracy required in a computed result
depends not on the machine that produces it but only on the conclusions that
will be drawn from it, and of the programmer, the compiler, and the hardware,
at best only the programmer can know what those conclusions may be.


