Kabšo algoritmas (I)

Saulius Gražulis

Vilnius, 2024

Vilniaus universitetas, Matematikos ir informatikos fakultetas

Id: 11-Kabšo-algoritmas-1.mltex 11326 2024-05-14 11:10:15Z saulius 2024 m. gegužės 14 d.

Klausimai

- Ar šios molekulės panašios?
- Kurios molekulių dalys yra panašios?
- Kiek jos panašios?

Klausimai

- Ar šios molekulės panašios?
- Kurios molekulių dalys yra panašios?
- Kiek jos panašios?

Rasti kieto kūno judesį, sutapatinantį du atomų rinkinius:

Rasti kieto kūno judesį, sutapatinantį du atomų rinkinius:

Taip, kad

$$E = \frac{1}{2} \sum_{n=1}^{N} w_n (\mathsf{U}\mathbf{x}_n - \mathbf{y}_n)^2 \to \min$$
$$\mathbf{kur} \ \mathsf{U} = [u_{ij}]_O$$

A solution for the best rotation to relate two sets of vectors. By WOLFGANG KABSCH, Max-Planck-Institut für Medizinische Forschung, 6900 Heidelberg, Jahnstrasse 29, Germany (BRD)

(Received 23 February 1976; accepted 12 April 1976)

A simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric constraint on the transformation.

イロト イ理ト イヨト イヨト

Straipsnis

Acta Cryst. (1976). A32, 922

A solution for the best rotation to relate two sets of vectors. By WOLFGANG KABSCH, Max-Planck-Institut für Medizinische Forschung, 6900 Heidelberg, Jahnstrasse 29, Germany (BRD)

(Received 23 February 1976; accepted 12 April 1976)

A simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric constraint on the transformation.

• Horn (1987) "Closed-form solution of absolute orientation using unit quaternions"

イロト イポト イヨト イヨト

A solution for the best rotation to relate two sets of vectors. By WOLFGANG KABSCH, Max-Planck-Institut für Medizinische Forschung, 6900 Heidelberg, Jahnstrasse 29, Germany (BRD)

(Received 23 February 1976; accepted 12 April 1976)

A simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric constraint on the transformation.

- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions"
- Kaindl ir kt. (1997) "Metric properties of the root-mean-square deviation of vector sets"

イロト イポト イヨト イヨト

A solution for the best rotation to relate two sets of vectors. By WOLFGANG KABSCH, Max-Planck-Institut für Medizinische Forschung, 6900 Heidelberg, Jahnstrasse 29, Germany (BRD)

(Received 23 February 1976; accepted 12 April 1976)

A simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric constraint on the transformation.

- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions"
- Kaindl ir kt. (1997) "Metric properties of the root-mean-square deviation of vector sets"
- Steipe (2002) "A revised proof of the metric properties of optimally superimposed vector sets"

< □ > < 同 > < 回 > < 回 > < 回 >

A solution for the best rotation to relate two sets of vectors. By WOLFGANG KABSCH, Max-Planck-Institut für Medizinische Forschung, 6900 Heidelberg, Jahnstrasse 29, Germany (BRD)

(Received 23 February 1976; accepted 12 April 1976)

A simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric constraint on the transformation.

- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions"
- Kaindl ir kt. (1997) "Metric properties of the root-mean-square deviation of vector sets"
- Steipe (2002) "A revised proof of the metric properties of optimally superimposed vector sets"
- Chen ir kt. (2004) "RETRACTED: A strict solution for the optimal superimposition of protein structures"

イロト イポト イヨト イヨト

• Schönemann (1966) "A generalized solution of the orthogonal Procrustes problem" *Psychometrika*

- Schönemann (1966) "A generalized solution of the orthogonal Procrustes problem" *Psychometrika*
- Kabsch (1976) "A solution for best rotation to relate two sets of vectors" *Acta Crystallographica Section A*

Image: A Image: A

- Schönemann (1966) "A generalized solution of the orthogonal Procrustes problem" *Psychometrika*
- Kabsch (1976) "A solution for best rotation to relate two sets of vectors" *Acta Crystallographica Section A*
- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions" *Journal of the Optical Society of America A*

• • = • • = •

- Schönemann (1966) "A generalized solution of the orthogonal Procrustes problem" *Psychometrika*
- Kabsch (1976) "A solution for best rotation to relate two sets of vectors" *Acta Crystallographica Section A*
- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions" *Journal of the Optical Society of America A*
- Markley (1988) "Attitude determination using vector observations and the singular value decomposition" *The Journal of Astronautical Sciences*

A (10) A (10) A (10) A

- Schönemann (1966) "A generalized solution of the orthogonal Procrustes problem" *Psychometrika*
- Kabsch (1976) "A solution for best rotation to relate two sets of vectors" *Acta Crystallographica Section A*
- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions" *Journal of the Optical Society of America A*
- Markley (1988) "Attitude determination using vector observations and the singular value decomposition" *The Journal of Astronautical Sciences*
- Coutsias ir kt. (2004) "Using quaternions to calculate RMSD" Journal of Computational Chemistry

- Schönemann (1966) "A generalized solution of the orthogonal Procrustes problem" *Psychometrika*
- Kabsch (1976) "A solution for best rotation to relate two sets of vectors" *Acta Crystallographica Section A*
- Horn (1987) "Closed-form solution of absolute orientation using unit quaternions" *Journal of the Optical Society of America A*
- Markley (1988) "Attitude determination using vector observations and the singular value decomposition" *The Journal of Astronautical Sciences*
- Coutsias ir kt. (2004) "Using quaternions to calculate RMSD" Journal of Computational Chemistry
- Theobald ir kt. (2012) "Optimal simultaneous superpositioning of multiple structures with missing data" *Bioinformatics*

イロト イ理ト イヨト イヨト 二日

- Mažiausių kvardratų metodas;
- Funkcijos minimizavimas;
- Lagranžo koeficientų metodas;
- Tikrinių (nuosavųjų) verčių teorija;

Mažiausių kvadratų metodas

$$E = \frac{1}{2} \sum_{n} w_n (\bigcup \mathbf{x}_n - \mathbf{y}_n)^2 \to \min$$

æ

Mažiausių kvadratų metodas

$$E = \frac{1}{2} \sum_{n} w_n (\bigcup \mathbf{x}_n - \mathbf{y}_n)^2 \to \min$$

Su apribojimu:

$$\mathsf{U}^T\mathsf{U}=\mathsf{I}, \ \mathsf{U}=\left[u_{ij}\right], \ \mathsf{I}=\left[\delta_{ij}\right]$$

t.y.

$$\sum_{k} u_{ki} u_{kj} - \delta_{ij} = 0$$

Saulius Gražulis

Vilnius, 2024 7 / 13

Funkcijos minimizavimas (1 kintamasis)

Funkcijos minimizavimas (1 kintamasis)

Daugelio kintamųjų f-ja

Vilnius, 2024 9 / 13

Daugelio kintamųjų f-ja

Lagranžo koeficientų metodas

Vilnius, 2024 10 / 13

Lagranžo koeficientų metodas

Vilnius, 2024 10 / 13

Thank you!

http://en.wikipedia.org/wiki/Topaz

Coordinates Original IUCr paper <u>2207377.cif</u> <u>HTML</u>

イロト イポト イヨト イヨト

http://www.crystallography.net/2207377.html

A path to freedom: $GNU \rightarrow Linux \rightarrow Ubuntu \rightarrow MySQL \rightarrow R \rightarrow \BbbkT_{PX} \rightarrow TikZ \rightarrow Beamer$

References I

- Chen, Chuanbo ir kt. (2004 m.). "RETRACTED: A strict solution for the optimal superimposition of protein structures". Iš: *Acta Crystallographica Section A* 60, p. 201–203. DOI: 10.1107/S0108767304003654.
- Coutsias, Evangelos A. ir kt. (2004 m.). "Using quaternions to calculate RMSD". Iš: *Journal of Computational Chemistry* 25, p. 1849–1857. DOI: 10.1002/jcc.20110.
- Horn, Berthold K. P. (1987 m.). "Closed-form solution of absolute orientation using unit quaternions". IS: *Journal of the Optical Society of America A* 4, p. 629–642. DOI: 10.1364/JOSAA.4.000629.
- Kabsch, Wolfgang (1976 m.). "A solution for best rotation to relate two sets of vectors". Iš: Acta Crystallographica Section A 32, p. 922–923. doi: 10.1107/S0567739476001873.
- Kaindl, K. ir kt. (1997 m.). "Metric properties of the root-mean-square deviation of vector sets". Iš: *Acta Crystallographica Section A* 53, p. 809. DOI: 10.1107/S0108767397010325.
- Markley, F. Landis (1988 m.). "Attitude determination using vector observations and the singular value decomposition". Iš: The Journal of Astronautical Sciences 38, p. 245-258. eprint: https://ntrs.nasa.gov/api/citations/19930015542/downloads/ 19930015542.pdf?attachment=true.
- Schönemann, Peter H. (1966 m.). "A generalized solution of the orthogonal Procrustes problem". Iš: *Psychometrika* 31, p. 1–10. DOI: 10.1007/BF02289451.

ヘロト ヘロト ヘビト ヘビト

A path to freedom: $GNU \rightarrow Linux \rightarrow Ubuntu \rightarrow MySQL \rightarrow R \rightarrow \mu TeX \rightarrow TikZ \rightarrow Beamer$

- Steipe, Boris (2002 m.). "A revised proof of the metric properties of optimally superimposed vector sets". Iš: *Acta Crystallographica Section A* 58, p. 506. DOI: 10.1107/S0108767302011637.
- Theobald, Douglas L. ir kt. (2012 m.). "Optimal simultaneous superpositioning of multiple structures with missing data". Iš: *Bioinformatics* 28, p. 1972–1979. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/bts243.